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1 Limite de siruri

Definitie (majorant). Se numeste majorant al unei multimi orice numar mai mare sau egal cu
toate elementele multimii.

Se numeste minorant al unei multimi orice numar mai mic sau egal cu toate elementele multimii.

Definitie (supremum). Se numeste supremum al unei multimi cel mai mic majorant, daca exista.

Definitia poate fi tradusa astfel:

M>a, Vac A

M =swpA { Ve>0,dac A M—-c<a<M

Se numeste infimum al unei multimi cel mai mare minorant, daca exista. De asemenea, un
numar m este infimum al unei multimii A dacd —m este supremum al multimii —A.

Axioma (Cantor). Orice multime mdrginitd superior are supremum.

Pentru o multime A marginitd inferior 3 inf A = —sup(—A), intrucat —A este marginita
superior.

Definitie. Sir de numere reale se numeste orice functie f : N — R si se noteaza cu f,, = f(n), Vn €

N.

Definitie. Sir crescator se numeste orice sir f,, cu f; < f;, V4,7 € N,@ < 3.

Sir strict crescator se numeste orice sir crescator cu elemente distincte doud cate doua. Un sir
fn este (strict) descrescitor dacd — f,, este (strict) crescator. Un sir este (strict) monoton daci este
(strict) crescétor sau descrescitor.

Definitie. Sir marginit superior se numeste orice sir f, pentru care 3 M € R astfel incat f, <
M,VneN

Un sir f, este marginit inferior daca — f,, este marginit superior. Un sir este marginit daca este
marginit superior si inferior.

Un sir f, este nemarginit superior dacd nu este marginit superior, adica vV M € R, 3ny € N
cu fn, > M. Un sir f, este nemarginit inferior daca —f,, este nemarginit superior. Un sir este
nemarginit dacd este nemarginit superior sau inferior.



Definitie (limita de sir). Un punct [ € R se numeste limita de sir dacd Ve > 0, I n. € N astfel
incat |f, — 1| <&, Vn >n. Dacd Ve >0, In. € N astfel incat f, > ¢, ¥V n > n., atunci limita
sirului este co. Daca Ve >0, 3 n. € N astfel incat f, < —e, ¥V n > ng, atunci limita sirului este
—00.

Se noteaza f, — [ sau lim, o fn = [. Se observa ca limita unui sir, daca exista, este unica
(demonstratia este 1dsata ca exercitiu cititorului).

Definitie. Un sir se numeste convergent daci are limita reald (finitd). Un sir se numeste divergent
dacé nu e convergent (nu are limita sau are limita infinitd).

Teorema (Weierstrass). Un sir monoton si mdrginit este convergent. Un sir monoton si nemdrginit
are limitd infinita (este divergent).

Demonstratie. Fie z, un sir monoton si marginit. Presupunem intai ca este crescator. Fie multimea
A = {x,| ¥V n € N}, marginitd superior (intrucit sirul este méarginit superior), deci din Cantor
3 M = sup A, adica
Vae Aja< M
si
Ve>0 dJa€ A, M—ec<a< M.

Dar a € A, deci I n. € N,z,_ = a. Fiind sir crescator, atunci z,, > x,_, Vn > n., asadar
Ve>0 dn. € Nastfel incat M —e <z, <z, <M, Vn>n, <= z, - M cR,

prin urmare este convergent. Daca sirul este descrescator, atunci —x,, este crescator si conform
cazului anterior converge la M. Deci x,, = —M, adica este convergent.

Daca =z, este crescator si nemarginit superior, atunci Ve >0 I n. € N, x,, > € si x,, >
Tp., VN >mn.. Atunci Ve >0 dn. €N, z, >z, >¢, Vn>n < z, — oo Daca

este descrescator si nemarginit inferior, atunci —z,, crescator si nemarginit superior — —z,, —
o0 = T, — —00. | |

Definitie (subsir). Un sir s, se numeste subsir al sirului f,, dacd 3 k,, € N strict crescitor astfel
incat s, = fi,, -

Orice subsir al unui sir cu limita tinde la aceeasi limita. Asadar, daca un sir are doua subsiruri
cu limite distincte, atunci nu are limita.

Teorema (Criteriul Clestelui). Fie z,, un sir de numere reale astfel incdt an, < xn, < by, V1 > no,
unde a, — 1, b, =1 €R. Atunci x,, — [.



Demonstratie.
0<z,—a,<b,—a,—1-1=0

= Ve >0 In. € Nastfel incat 0 < z,, — a,, < b, —a, <&, Vn>max(ng,ng) = N;
<~ x, —a, —0

|
Daca a,, — oo, atunci la fel si z,, — oo. Daca b,, — —o0, atunci la fel si x,, - —o0.

Observatie. Sirul x, = a™,|a| <1 este convergent la 0.
Demonstratie.

1\" 1 " 1 ) . .

- =|1+—-1) >14+n{— —1) — oo (ineg. lui Bernoulli)

a lal lal

., 1 1
|zn, — 0] = |a|" = 7> —=0= z,—0
a1 00
(1)
|
Teorema (Criteriul Raportului). Fie z,, un sir de numere reale astfel incdt
x
lim | < 1.
n—0oo Ty

Atunci z,, — 0.
Demonstratie. Fie | = limpoo |22 = 0 < |zpq1| < ((+€) - |zn|, V n > n.. Fixam
8250217_[>0 — l+E=17'H<1. Prin urmare 3 ng € N, O<|wn+1|<l+71-
|Zn], Vi >ng = 0< |2, < (52" - |2y,,], Vn > ng (inductie). Din Criteriul Clestelui, sirul
|zn] =0 = =z, — 0. [ |

Lema (Cesaro). Orice sir marginit are cel putin un subsir convergent.

Demonstratie. Fie sirul marginit x,, ( 3 ag,bo, ap < x, < by, ¥V n € N) si sirurile ay,b,, unde

n=1 daca intervalul (a,,by,) contine o infinitate de elemente ale sirului

_ _ ap—1+b
Gp = Anp-1, bn = = P}

. o b . . . oA
Zp, lar dacd nu, a, = a”'lfm, b, = by_1. Astfel, exista un subsir s, al sirului z,, astfel incét

an < Sy < by, Vn € N. Se observa ca a, este crescator, iar b,, este descrescator, ambele marginite.
Deci, din Weierstrass, cele dou& siruri sunt convergente, la aceeasi limitd [ € [ag, bo], Intrucét
by, —a, = l“);in“o — 0. Atunci, din Criteriul Clestelui, s, — [. Asadar, existd un subsir convergent
twin! |



Teorema (Stolz =). Flie sirurile x,,yn € R, unde y, este sir nemdrginit superior, strict crescator
st pozitiv, iar

. X 1—

lim " — ] e RU{—o00, +o0}.

Atunct

Demonstratie. Daca | € R, atunci Ve >0 In. € N, [ - § < Z"ii:z” <Il+5, Vn>n.

= ([=5)Wnt1=Yn) < Tpny1—2n < (I4+5)(Ynt1—Yn). Adunand relatiile pentru n—1,n—2,...,n.
se obtine: (I = §)(Yn —Yn.) < Tn —Tn. <+ 5)Wn —¥n.) = (= 5)(1 — yy%) + % <<
I+ 5)1 = T=) + =

Yn Yn
: € Yn Tn, € 5 Yn Tn, e, € ,
im(l—2)1—-=)+—==l—-- = (I-2)1-=)+—=>(l—-2)—=-=l—-¢,Vn>n
B R N -/ (B O R (RSB =
, 5 Yn T, 5 5 Un T, e, € "
1 I+ -)(1—== t=l4+- = (I+=)(1 - = =< (4= —=l4+e, Vn>n
n1—>120(+2)( yn)+yn T3 (+2)( yn)"’yn (+2)+2 + 2 Mg
= l—6<x—n<l+€, V n > max(ne,n.,n’) = N, < In g
Yn Yn

Dac# | = 400, atunci ¥Ye >0 In. €N, Zni%zn >2,Vn>n. = Tni1—Tn > 26(Yni1—Yn)-
Adunand relatiile pentru n — 1,n — 2,...,n. se obtine: z, — x,. > 2e(Yn — Yn.) —> z—"

25(1—%)+%—>25 = 26(1—%)+%>25—6:5, Vnzn, = *>¢ Vnz=
max(ne,n;) <<= {* — 4o0o. Dacd | = —oo, atunci aplicam cazul anterior pentru sirurile
—Tp,Yn = o = 00 = T — —00. |

Teoremi (Stolz ). Fie sirurile x,,y, € R, unde y, este strict descrescdtor, iar
0 : Y Y

lim z, = lim y, =0,
n—o0 n—oo

Tpy1 — T
lim " — ] e RU{—o0,+o0}.
n—=00 Yn4+1 — Yn

Atunci
. Tn
lim — =1.
n— o0 y’ﬂ

Demonstratie. Daci | € R, atunci Ve >0 In. €N, [ —¢e < z":i%z" <l+e Vn>n =

(—=e)yn — Ynt1) < T — Tpt1 < ([ +€)(Yn — Yn+1). Adunand relatiile pentru n,n + 1,...,m se
obtine: (I — &)(Yn — Ym) < Tn — Tm < (I +&)(Yn — Ym). Trecem pe m la infinit: (I — )y, <

Tp < 4+ &)y, = l—a<%<l+£,Vn2nE — %—>l. Dacd | = +oo, atunci

Ve>0 dn. €N, Z”E%;c” >e, Vn>ne = Tpy1 — Tn < €E(Ynt1 — Yn). Adunand relatiile



pentru n,n+ 1,...,m se obtine: x,, — x, < (Ym — Yn). Trecem pe m la infinit: —z,, < — -y, =

z—” >e, Vn>n — z" — 400. Dacad | = —oo, atunci aplicdm cazul anterior pentru sirurile
—Tp,Yn = = 00 = T = —00. |

Lema (Cesaro IT). Dacd un sir mdrginit nu converge la o limitd | € R, atunci existd cel putin un
subsir convergent al acestuia care nu tinde la l.

Demonstratie. Fie sirul z,, care nu converge la ! = ¢ > 0 astfel incat Vn € NI ng >n cu
|:En0 — l| > £g.

= T ko > 0 astfel incat |zx, — | > €0, I kn > kn—1 + 1 astfel incat |xg, — 1] > &g, Vn € N*

= k, este strict crescator, iar zj, este subsir al sirului z,,, cu proprietatea |z, —I| > €9, Vn € N

. o . ., Cesaro . . .
Tk, sir marginit = 3 s, subsir convergent al sirului z, = s, — 'eR

Dar |s, — | >ep, VneEN = |I'=1|>eg >0 = [ #

Teorema (*). Fie functia f : I — J (I,J intervale C R), surjectivd si monotond, si un sir
T €1, vy =1 l. Atunci f(zn) = f(0).

lema

Demonstratie. Luam f crescitoare. Presupunem prin absurd ci f(z,) nu converge la f(I)
3 s, un sir strict crescator cu f(xs,) — A # f(1).

x, convergent, deci marginit — Im, M el m<z, <M, VneN = f(m) < f(xs,) < f(M)

— f(m) <A< F(M) = AeJ " JocTeu f(s) =N = flas,) = f(s)

Abordam cazul in care f(s) < f(I) surjectiyitate g ¢ I, f(s) < f(a) < f(D)

cresc

= s<a<l.Darxs, >l = InpeNcua<uz,, Vn>ny = f(a) < f(zs,)

= f(a) < f(s) = a < s (Fals)

Analog cazul cand f(s) > f(I) = A= f(s) = f(I) (Contradictie) = f(z,) — f(I). Pentru f
descrescitoare aplicdm rationamentul anterior cu —f = —f(z,) = —f(l) = f(z,) = f(1) N



1 n
Fie sirul e,, = <1 + ) , n €N
n

Observatie. Sirul e,, este strict monoton si marginit, deci convergent.

Demonstratie.

\N" 1+(1+2%):
YA (1 + > < 1+d+s)n (ineg. mediilor)
n n+1

= e, < ep,y+1 —> sirul este strict monoton (1)

&1 n(n—1)(n—2)..(n—k+1)

nk nk
k=0
1 2 E—1 "1 ot
1—=)(1=-2)... (1= — =
+Zk.< n>( n>( AN
k=2 k=0
1 i 1 1
— < — =92 :2 S
2 k:< +1'+Zk k1) +Z Kk e

1\" 1

en = <1 + ) >1+4+n-— =2 (ineg. lui Bernoulli)
n n

= 2<e, <3, VneN" = sirul este marginit (2)

22 e, > 1eR (Weierstrass)

Definitie.

of .. "
e fef lim (1+)
n— 00 n

Teorema (Neper).

o <ln(n+1)fln(n)<%, VneN*



Demonstratie. Sirul e, este strict crescator si e, e = e, <e.

1\" n—+1\" 1
1+ﬁ <e <= In p <1ne<:>1n(n+1)—ln(n)<ﬁ

Fie f, = (1+ )"

n+1 1+ n_ ., TL-|—].
R ( i > SR ) (ineg. mediilor)

n+1 n+2

— i n+1< ntl n+2:>f>f
n+1 n+2 " ntl

Deci f, este strict descrescator si f, > e = f, > e.

1
n+1

1 n+1 1 n+1
(lJr) >e<:>ln<nJr > >Ilne < In(n+1) —In(n) >
n n

Observatie. Sirul E,, — e.

Demonstratie. Cunoastem ca:

1 1 "1 1 2 k-1
==+ — —(1==)(1=-=2) .. (1-2—
¢ 0!+1!+k§::2k! ( n)( n> < n)

Din Inegalitatea lui Bernoulli (generalizata):

<1l> (12)...<1k_1>>112...k_11k(k_1)
n n n n o n n 2n

1 ~k(k—1) 1 & I E,
:>en>En—%k§27k! _En—%kz:2 | = En -

En—Z

= 0>e,— F, > —
2n

— 0 (E, este sir marginit) = E, =(E, —¢e,)+e, > 0+e=¢e

Observatie. Numarul e este irational.



Demonstratie.

" 1 1 - 1 1 - 1
En m_En: = 1+ <
* ;(n+k)! (n+1)!< I;Q(n+2)(n+3)...(n+k)> (n+1)! & (n+2)F1
1 1= gyw 2 1
— . (+12) < n+ < ,VneN*
m+1! 11— =5 nl-(n+1)2 " n-nl

Trecem pe m la infinit:

1
0<e—En<7' — 0<n-nl-e—n-n!'-E, <1, VneN*
n-n!

Daca presupunem prin absurd ci e € Q, = e = 17;, p,q € Q*, (p,q) = 1, atunci:

0<q'-p—gq-q- E; <1 (Contradictie, intrucat nu exista numere naturale in (0,1))

= e¢Q

Teorema (Criteriul lui e). Fie sirurile z, — oo, y, — 0. Atunci:

1\
lim (1 + ) =e
n— oo Ty

lim (1 +yn)ﬁ =e

n—oo

Demonstratie. Din [z,] < @, < [2,] + 1:

[2n] ZTn [zn]+1
1 1 1
(1+) <(1+> <<1+)
[z,] +1 T [n)

[zn]+1 T 2]
1 1 1 1 1
:>(1+> — <<1+> <<1+> ~<1+>
[,] + 1 I+ o Tn (2] (7]

[zn]+1
Presupunem ci z, — oo. Atunci [z,] — oo, [z,] + 1 — oo. Sirurile (1—!-#)

ENES] St

[xn]

[xn]
(1 + L) sunt formate din subsiruri ale sirului (1 + %)n, deci au aceeasi limita, adica e. Asadar,

Tn
din Criteriul Clestelui rezulta ca lim,,_, (1 + Ii) = e. Daca x, — —oo, atunci aplicam cazul

anterior pentru sirul —z,, — 1:

—z, —1 —x,—1 Tp+1 T
1 n n n . " 1 n . 1 n
e= lim (14+ — = lim CE = lim Tn ¥ = lim (14 —
n—00 -z, — 1 n—oo \ Zp + 1 n—00 Tn n—o0 Tn




Pentru y,, aplicam primul caz pentru subsirul pozitiv al sirului yi (dacd existd) si al doilea caz
pentru subsirul negativ al acestuia (daca existd). Avem apoi:

1

1 Un
e = lim <1+1> = lim (1+yn)ﬁ

n— 00
Yn

Observatie. Fie x,, — | € R, atunci:
sinx, — sinl, cosx, — cosl

Demonstratie.

s
O<sinrx<x<tga, Vze (075) = dng € N astfel incat sinz, < z, < tgz,, Vn > ng

—1 n+1 —1
2sin<xn2>cos(m2+>‘<2-x"2 -1—=0

— sinz, — sinl

|sinz,, —sinl| =

. T . T
cos x,, = sin (xn + 5) — sin (l + 5) = cosl

Observatie. Avem urmdtoarele limite remarcabile (x, — 0):

a) hmM:l

n—00 Tn

a®r —

b) lim

n—00 Ty

1 n) =1
¢) lim %zr
n—00 Tn

=Ina

) lim S0
n— 00 Ty
e) lim ta(zn)

n—oo Iy

=1

£) lim arcsin(z,,) _q

n—00 Ty



Demonstratie.

In(1 n a1 o
a) lim In(1 + o) = lim In(1 ern)fln =In ( lim (1 Jra:n)wn) =lne=1
n—oo Tn n—00 n— 00
Tno—1 Tno—1 In(1 Fno—1 In(a®r
b) lim = = lim —— o+ (a L Y (Ui B
n—oo Iy, n—oo In(1 + (a*~ — 1)) T n—oo I,
1 n) —1 . 1 n) —1 In(1+2z,)" . In(l+=,
C)lim%:hm (1+2n) _n( +Zn) :r.hmmz
n—00 Tn n—oo In(1+ (1 +x,)" — 1) Tn n—o0 T
d) 3 ng € N astfel incat sinz, <z, <tgz,, Vn>ng = 1< .acn < —1 = lim
sinz,  coszp, n—o0
t n . ]- i n
e) lim g(x):hm ~w:1
n—oo I, n—00 COS Ty, Tn
£) Tim arcsin(z,,) ~ lim .arcsin'(xn) _1
n=yo0 Tn n—oo sin(arcsin(x,, ))
o) li arctg(z,) ~ lim arctg(zy,) _1
n—oo Iy n—oo tg(arctg )
Problema 1.1. Demonstrati ca sirul
1 1 1
H,=1+-+4+-+4+..+=
ty g et
tinde la infinit.
Problema 1.2. Demonstrati ca sirul
RS PR
Cn = —+-+.+——lnn
2 3 n
este convergent.
Problema 1.3. Demonstrati ca
1 2n !
lim — = lim —= = lim — = lim — = 0.
n—oo N n—soo 2N n—oo Nl n—oo NN

11

sin(x,)

Tn



2 Limite de functii

Definitie (vecinitate). O multime V' se numeste vecinitate a punctului g € R dacd 3¢ > 0 cu
(xo — e,20 +¢) C V. O multime V se numeste vecinitate a lui oo dacd Je > 0 cu (g,00) C V. O
multime V' se numeste vecindtate a lui —oo dacd e > 0 cu (—o0,—¢) C V.

Se noteaza cu V(zp) multimea vecindtatilor unui punct xg.

Definitie. R=R U {—00,00}

Definitie (punct de acumulare). Un punct a € D se numeste punct de acumulare a multimii D
daca

VvV eVia), (V\{a})ND#D

Se noteaza cu D’ multimea punctelor de acumulare a multimii D.

Observatie.
aeD < Fz,eD\{a} cuz, —a

Definitie (limita de functie). Un punct I € R se numeste limita unei functii f : D — R, D C R,
in punctul o € D’ daci oricare vecinatate V a lui [, existd o vecinatate U a lui xq astfel incat
fx)eV,YeeUND,x # x.

1™ Lim f(z)

T—rT0o

O exprimare echivalenta cu ¢ — 9:

lim f(z)=1€eR < Ve>03J>0astfel incdt Vz cu |z — x| < d avem |f(z) — 1| <e
r—xo€ER

lim f(x) =00 <= Ve >03¢ >0 astfel incdt Va cu |z —x¢| < é avem f(x) > ¢
r—x9€ER

lim f(z) =1€R <= Ve>03¢>0astfel incat Vo > d avem |f(z) —I| <e

r—r00

Restul cazurilor (6) sunt lasate ca exercitiu cititorului.

12



Teorema (Criteriul lui Heine). Fiexo € D', l€R, f:D — R.
Ji= lim f(z) < Va, €D\ {zxo} cuzy, = x0, flan) =1

T—rxTo

Demonstratie. 7 ="
Jl=lim f(z) < VYV eV0)3IU €V(xg) cu f(UND\ {xo}) CV

T—T0o
Tpn =20 = In.eNVn>n.cux, €U = f(z,) €V
= VV eV()In. € Nastfel incat f(z,) €V, Vn>n. < f(z,) —1
7«<=" Presupunem prin absurd ca limita lui f in x¢ NU este (.

= IV eV()VU € V(xg) Iz € UND \ {xo} astfel incat f(z) ¢ Vo

= 3Jz, e UND\ {xo}, xn, — I, astfel incat f(z,) ¢ Vo = f(z,) - [ (Contradictie)
]

Observatie. Dacd 3 x,,yn € D\ {a}, xn,yn — a € D’ astfel incat
Jim f(2,) # lm_ f(yn)

Atunci # lim f(x)
T—a

Observatie. Conform criteriului lui Heine, toate limitele remarcabile de la siruri sunt valabile si

pentru functii:
In(1
o) tim BUFD)
x—0 x
v
a =Ina

b) lim

x—0 x
1 "T—1
¢) lim A+az)" -1 —r
x—0 x
d) lim sin(z) _ 4
z—0 X
e) lim t8(x) =1
r—0 X
. arcsin(z)
D= =!
. arctg(x)
L

De asemencea, valabile sunt si criteriile de convergenta (lasate ca exercitiu cititorului).

=1
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Definitie (limita laterald). Un punct | € R se numeste limita laterala la stinga a unei functii
f:D —= R, DCR,in punctul g € (DN (—00,x0)) dacd oricare vecinatate V' a lui [, existd o
vecindtate U a lui zg astfel incat f(x) € V, Ve € UN D,z < x.

not . .
1= fhgrr%o f(z) sau xh/r;lo f(z) sau f(xo —0)
r<Xxo

Un punct [ € R se numeste limita laterals la dreapta a unei functii f: D — R, D C R, in punctul
zo € (DN (z9,00)) daci oricare vecindtate V' a lui I, existd o vecindtate U a lui 2o astfel incat
fx)eV,YxeUND,z > x.

1 f}i%’ f(z) sau xh\n;g f(x) sau f(xo +0)

Observatie.
3 Jim, f(@) = Jim, f@) =1 = 3 lim f()=1
rx<xQ Tr>x0

Teorema (*). O functie monotond f : I — R (I C R interval) are limite laterale la stinga si
dreapta in orice punct interior si cate o limita laterald in fiecare dintre capete.

Demonstratie. Presupunem ca f crescatoare. Fie x punct interior lui I si A = {f(z) |z < xo} =
a < f(xzg), Va € A = A marginita superior.

Cantor IM =supA < M majorant si Ve >0, Jz. <zgcuM —e < f(z.) <M

feresc. = f(x) > f(ze), Ve >2., = Ve >0, Iz < xp astfel incat ¥z € (z.,20), M—e < f(z) <M

= Jfm ) =M
r<xo
Asemanitor se demonstreaza si existenta limitei laterale la dreapta, egald cu inf{f(x) | x > zo}.
Daca f descresciatoare, atunci aplicim cazul anterior pentru —f = —f are limite laterale — f
are limite laterale in z.
In capitul din stanga existil limita laterals la dreapta egald cu inf{f(z) | € I'}. In capitul din
dreapta exista limita laterald la stanga egala cu sup{f(z) | = € I}. |
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3 Continuitate

Definitie (continuitatea intr-un punct). O functie f : D — R, D C R, se numeste continué intr-un
punct g € D daca YV € V(f(x0)), U € V() astfel incat f(x) € V, Ve € UND.

O functie este continua pe o multime C R daca e continua in fiecare punct al ei.

Observatie. O functie este continud in toate punctele izolate ale domeniului.
O functie f : D - R, D CR, este continud in xo € DN D’ dacd si numai dacd
Heine

lim f(z) = f(wo) <= VYa, €D, a, — w0, f(an)— f(z0)

Tr—xo

Observatie. Dacd 3 a,,b, = x9 € D, iar
o35, (an) 7 12, (be)

= f nu este continud in xg.

Daca
Jim f(z), f(zo), lim f(z)
z<x0 T>To

existd si nu sunt toate egale, atunci f nu este continud in .

Definitie. Orice punct (al domeniului) in care o functie nu este continui se numeste punct de
discontinuitate. Daca limitele laterale sunt ambele finite, se numeste punct de discontinuitate de
speta I, iar dacd nu, punct de discontinuitate de speta II (o limita laterala fie nu exista, fie este
infinita).

Teorema (Weierstrass). O functie continud definitd pe un interval inchis este marginitd si isi
atinge marginile.
Demonstratie. Fie f : [a,b] — R. Presupunem prin absurd ci este nemarginita.

Cesaro

= FJuy € [a,b] cu f(u,) — oo, dar sirul este marginit = 3 k,, strict cresc, ux, — ! € [a, b]
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= f(ug,) = f(l) # +oo (Contradictie)

Presupunerea este falsd, deci functia este marginita Cantor 3 37 = sup(Imys), m = —sup(—Imy) =

inf(Imy).
= 3Jz, € [a,b], f(z,) = M dar sirul este marginit 80 3, strict cresc, x5, =1 € [a,b]

= f(xsn) _>f(l/)7 f(xsn) - M = M:f(l/) € Imy

Analog m € Imy = concluzia. |

Teorema (*). Fie o functie continud f : [a,0] = R cu f(a)-f(b) < 0. Atunci I ¢ € (a,b), f(c) =0.
Demonstratie. Luam cazul in care f(a) < 0 < f(b).

Cantor

Fie multimea A = {z € [a,b] | f(z) >0} = A C(a,b)] = Jc= —sup(—A) =inf A > a.

c=infA = 3FJz, €A, v, >c = flzn) = flc),dar f(zn) >0 = f(c) >0> f(a) = c>a

Fiean:c—u<c:> an ¢ A = f(an) <0
n

an = = fla)) = f(c) = f(©) <0 = 0< () <0 = f(c) =0, c€ (a,b)

Pentru cazul f(a) > 0 > f(b), aplicim cazul anterior pentru —f = 3J ¢ € (a,b), —f(c)
0 = f(c)=0.

Definitie (proprietatea Darboux). O functie f : D — R, D C R, are proprietatea Darboux pe un
interval I C D dacd Va,be I, a<bsi VA cuprins intre f(a) si f(b), I c € (a,b), f(c) =\

Observatie. O functie continua pe un interval are prop. Darbouz pe acel interval.

Demonstratie. Fie f : D — R, D C R, continua pe intervalul I C D si a,b € I, a < b, alese
oarecare.
Fie g:[a,b] = R, g(z) = f(z) =X = g(a) - g(b) <0
Teorama 30 ¢ (a,b), g(c) =0 = f(c) = A
|

Observatie. Daca f are prop. Darbouz pe un interval, atunci are si pe orice subinterval al acestuia.
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Observatie. Nu toate functiile cu prop. Darboux sunt continue.

1
sin -, x#0

0 poq este continua in 0, dar are P.D. pe R:

Demonstratie. f:R =R, f(x) = {

1
arcsin A + mn

Va<0<beR, a#b, YA€ (f(a),f(b)), Ing €N, x,, € (a,b), f(xn,) = A

n

Fie z, = (— — 0, f(xn) = (=1)"sin(arcsin A + 7n) = (—1)?" A = A

Observatie.
f are prop. Darboux pe intervalul I = f(I) este interval.

Demonstratie. Presupunem prin absurd ci f(I) nu este interval = Ja,b € I, A € R cu

fla) <A< f(b), A& F(I)

ER Jee (a,b), f(c) =X e f(I) (Contradictie)

Observatie. Dacd Imy nu este interval, atunci f nu are prop. Darbouz.

Teorema (*). O functie cu prop. Darbouz pe un interval nu are puncte de discontinuitate de speta
I pe acel interval.

Demonstratie. Fie f : I — R, I interval C R. Presupunem prin absurd cd Ja € I, f(a —0) #
f(a+0). Notdm m = f(a —0), M = f(a+ 0) si presupunem m < M.

M—m M—-—m
3 ot

3U1€V(a),f(x)€<m— >7Vx€Ulﬂ(—oo,a)ﬁI

M—-—m M —
M
3 7 + 3

J = (U N(=00,a)NI)U Uz N (a,00) NI) este interval
M—m M_m>7é(i)$if(J)ﬁ<M—M_m M—m>7é®

EUQGV(a),f(:c)G(M m),VweUgﬂ(a,oo)ﬂI

M
, m—+ 3 3 , + 3

M—-—m M—m

Dar f(J) ¢ {m + T M — 3] = f(J) nu este interval. (Contradictie)

Dacad m > M se aplicd primul caz pentru —f = —f(J) nu este interval, deci nici f(J) =
Contradictie. ]
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Teorema (*). O functie injectivd cu prop. Darboux este strict monotond.

Demonstratie. Fie f : I — R, I interval C R, injectiva cu P.D. Presupunem prin absurd ca f nu
este monotond = Jxog < x1 <2 € I, f(zo) < fx1) > fx2) sau f(xo) > f(x1) < f(22).
Luam intai cazul cand f(zo) < f(z1) > f(z2).

A € (max{f(zo), f(x2)}, f(21)) = flxo) <A< fz1) > A> f(x2)

ER g€ (w0, 21), 2 € (x1,22), f(c1) = f(c2) = A (Contradictie — functia este injectiva)

Pentru al doilea caz, aplicam primul caz functiei —f = Contradictie = concluzia. |

Teorema (*). O functie monotond cu prop. Darbouzx este continud.

Demonstratie. Functia este monotona, deci are limite laterale in fiecare punct. Dar are P.D., asadar
nu are puncte de discontinuitate de speta I. Prin urmare limitele laterale sunt egale cu valoarea
functiei in acel punct, adica functia este continua. |

Observatie. O functie injectiva cu prop. Darboux este continud.

Teorema (*). O functie surjectivd si monotond definitd pe un interval cu valori intr-un interval
este continud.

Demonstratie. Functia este monotona, deci are limite laterale in fiecare punct. Daca acestea ar fi
distincte, functia n-ar fi surjectiva. Prin urmare limitele laterale sunt egale cu valoarea functiei in
acel punct, adica functia este continua. |

Observatie. Fie o functie f: I — J, I,J C R intervale, continud si inversabild. Atunci functia
inversd f~':.J — I este de asemenea continud.

Demonstratie. Functia f este inversabila <= bijectiva si are P.D. = strict monotona. Pre-
supunem ca este strict crescatoare.

= Vayel o<y < fla)<fly) = f(f @) =a<y=f(f"'W) <= [T@) <

— Inversa este strict crescatoare. Din faptul ca este surjectiva si monotona, definita pe un
interval cu valori intr-un interval rezulta ca este continud. Daca f este strict descrescatoare, se
aplica cazul anterior pentru —f == —f~! continui, de unde rezults concluzia. |
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Lema (*). Fie o functie convexd pe un interval. Atunci functia este mdrginitd pe acel interval.
Demonstratie. Fie f : [a,b] € R, convexa pe [a, b].
— flta+ (1 —-1)b) <tf(a)+ (1—1)f(b) <max{f(a), f(b)}, V€ [0,1]

= f(z) <max{f(a), f(b)}, YV € [a,b] = mairginitd superior.

Presupunem prin absurd ci este nemarginitd inferior — V M € R, 3 = € [q,b], f(z) < M.
Pentru My = min{f(a), f(b)}, 3 zo € (a,b), f(xo) < Mp.

PO = 10) () 4 b i g — T = F0)

b—xg a— xg

Fie 41 = (b—a)+ f(a)

Pentru My = min{y1,y2}, 321 € [a,b], f(z1) < M;. Dacd z1 € (a,z9) = w9 € (x1,b) :

= fltzr + (1= 1)b) < tf(21) + (1 —1)f(b)

ajofb .

Luam t = :
Ilfb

Sy @) = F0) + £(b)
Dar f(z1) <y = fla1) — f(b) < {O=LE) (4 —p)

zo — b f(b) — f(xo) a—b

— floo) < £6) + D HET N ) — ) - S(0) - ao)
Darw1>azx1—b>a—b=>$1£b<ﬁ:>—;;bb<—g—:2:—l

= f(xo) < f(b) — f(b) + f(z0) = [f(x0) < f(xo) (Contradictie)

Daca z1 € (g, b) se obtine in mod analog o contradictie = functia este marginita inferior. W

Teorema (*). Fie o functie convexd pe un interval. Atunci functia este continud @n orice punct
interior al intervalului.

Demonstratie. Fie f: I — R, convexa pe I, sia <z <y <b.
— fltat (1-t)y) < tf(a)+ (1= Df(y), Vte 1]

= A=tz +t'b) <1 —t)f(x)+tf(b), V' €]0,1]

= (@) < o= (@) = W) + T () i F) < = () = (@) + (2)
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— Y5 0) - f(2) < f@) = ) < Z—L(f(a) = f(v))

f marginith = f(b) — f(x), f(a) — f(y) marginite

Cleste

= }1_% fl@) = f(y) si 7}1_% f(y) = f(z), ¥ x,y puncte interioare
<y y>x

= mli_}rglo flz) = f(zo) = ml'gglo f(z), ¥ xy punct interior
x<To x>0

Deci f continua in orice punct interior.

20



4 Derivabilitate

Definitie (derivata unei functii intr-un punct). Se numeste derivata functiei f : D - R, D C R,
intr-un punct xg € D N D’ urméatoarea limitd, dacd exista:

f(x) B f(.’IJO) nét f/(xO)

lim
T—rTo T — X

Definitie (derivabilitate intr-un punct). O functie f : D — R, D C R, se numeste derivabila
intr-un punct o € DN D’ dacd 3 f'(zo) € R.

Daca 3 f'(x0) € {—00, 00}, atunci se spune cd functia are derivatd in .

Observatie. O functie este derivabila pe o multime C R dacd este derivabild in fiecare punct al ei.

Observatie (legatura dintre continuitate si derivabilitate). Orice functie derivabild intr-un punct
este continud in acel punct, dar invers nu.

Demonstratie.
. _ i f@) = flo) _ _ : _
xlggo f(@) — f(zo) = a:ligclo T e —a (x —20) = f'(20) 0=0 = mlggo f(z) = f(z0)
Functia g : R = R, g(z) = |z| este continud in 0, dar nu derivabila. |

Observatie. Daca o functie are derivata intr-un punct, nu este neaparat continud in acel punct.

Demonstratie. Functia f : [0,00) — R, f(z) = { ﬁ’ zig , are derivata oo in 0, dar este
discontinua.
1
lim ks = lim — =400
z—=04+ T — 0 =04 X

i flx) =07 -1= f(0)
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Definitie (derivata unei functii). Daca functia f : D — R este derivabild pe E C D, atunci functia

f""E—R

se numeste derivata functiei f.

Observatie. Sunt valabile urmatoarele requli de derivare (atunci cand expresiile sunt bine definite):

a) (f+9) =f+4

b) (f-9) =fd+fg

¢) <f)'_ f'9—1d

g g*

d) (fog) =(fog) -4

Demonstratie.
a) trivial

fWaly) — f(y)g(x) + f(y)g(x) — f(x)g(z)

= lim =

f(y)g(y) — f(x)g(x)

b) (f-g)'(x) = lim

y—=x Yy—x Yy—x y—x
= fo) - tim 2200 gy PO ). ) 4 00 g10) = (19 + Fo)0)

9 (D w=(r1)w-= <f~ ()4 J;) (0) = o) iy 2L B Sy

) tim 2@ ey (S FeN (e S
= =D T ™ (92+g2)() ( 7 )()

ol () — 1o FOW) = flo(x) :
d) (fog)'(@) = lim =520 — PE T g g ya
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Observatie. Functiile elementare au urmatoarele derivate:

a) (z") =n-2""', neN*

b) (") =€
1
c) (V) = ———, neN,n>2
) (Vo) = e
1
d) (Inz) = =
) (nay =+
e) (sinx) = cosx
f) (cosz) = —sinx
1
arcsinz) = ——, v € (—1,1
) (arcsina) =~ w e (-1.1
Demonstratie.
n _ .n _ n—1 n—2 n—2 n—1
a) (@Y = tim L= _ lim y—2)y" " +y" et byr" ")
y—=r Yy — y—ax y—
" v —e eVt -1 " .
b) (e"‘)’—hme € —lim & (e ):e"L-lne:eaL
y—oT Y — T y—ax y—x
Yy— 1

RS
c) (Vr) = lim Y~——— = lim =—
y—=r  Y— y—x (y _ CC)( n/ynfl + "/yn72 {1/5+ e W(’/xn72 4 {'/xnfl) n S pn—1

Iny —1 In(1 4+ £ 1
d) (Ing)’ — lim 2Y T, MAEET) L
y—=z Y —x y—x y—r . T
iny — si 2sin(¥=2) cos( ¥ sin( 452
e) (sinx)’zlimw:hm (55 cos( ):cosx-lim¥:cosx
y—x Yy—x y—x y—x y—x LQ

£f) (cosz) = (sin (g +x))l = cos (g +J:) : (g +x)/ = —sinz

.y . arcsiny — arcsin . arcsiny — arcsinz sin(arcsin y — arcsin x)
g) (arcsinz)’ = lim = lim — - : . =
y—a y—x y—= sin(arcsin y — arcsin ) y—x
. yV1—x2 —x24/1 — 92 . yV1— 22 —av1 — 22+ 2v/1 — 22 — /1 — ¢?
= lim = lim =
y—x Yy—x y—T y—x
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_ z(1—22—1+9% . z(ly—z)(y+ )
=+/1—22+ lim =+/1—22+ lim =
Ty VR ) M PRSI ey

x? _ 1
Vi—z2 J1—22

=v1-z2+

Observatie. Fie I,.J intervale CR, f: 1 — J, inversabila, f~*:J — I, y € J, f derivabild in
F~Yy), floft(y)#0. Atunci f=1 derivabild in y si:

1

(f 'y = IE0)

Demonstratie.

1

fof7 W=y = fof 'y - Hw=1= (f)u-= Fof iy

Definitie (punct de maxim local al unei functii). Se numeste punct de maxim local al unei functii
f un punct zo dacd IV € V(xg), f(zo) > f(z), YV e V.

Un punct este minim local al unei functii f daca este maxim local al functiei —f.

Definitie (punct de extrem al unei functii). Punct de extrem se numeste orice punct de maxim
sau minim local al unei functii.

Teorema (Fermat). Fie o functie f: I — R, T interval, si un punct de extrem xg € I, diferit de
capete, in care functia este derivabila. Atunci f'(xg) = 0.

Demonstratie. Presupunem ca zg este punct de maxim local = 3 V € V(zg), f(zo) >
f(z),VzeV.

f(z) — f(zo)

T — X0

f(x) — f(zo)

T — X0

= f(z)— f(z0) <0, Ve <zg,2€V = >0 = f'(z0) >0

= f(z)— f(z0) €0,V >20,2€V = <0 = f'(79) <0

Deci f'(zg) = 0.
Dacd xg este punct de minim local, aplicdim primul caz pentru —f = —f'(zo) =0 =
|

f'(zo) =0.
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Teorema (Rolle). Fie o functie f : [a,b] — R, derivabild pe (a,b) si continud in capete. Daca
fla) = f(b) = 3Fce (a,b), f'(c)=0.

Demonstratie. Dacd functia este constantd — f'(z) = 0, V & € [a,b]. Presupunem ci este
neconstanta:

Welcrsgrass f([a, b)) = [f(a), f(B)] si fie c € {e, B} \ {a,b} = ¢ € (a,b) si este punct de extrem.

T f1(e) = 0,

Observatie (sirul lui Rolle). Fie f : I — R, I interval, derivabild pe I si f' : I — R. Fie
D={xeI| f'(z) =0}. Dacd a,b € D, consecutive, f(a)f(b) <0, atunci existd exact o raddacind
alui f in (a,b).

Demonstratie. Pe un interval pe care derivata e nenuld, functia e injectiva (in caz contrar, aplicim
Rolle si obtinem o contradictie). Din P.D., avem cel putin o ridécind a functiei in (a,b), iar din
injectivitate aceasta este unica. |

Teorema (Lagrange). Fie o functie f : [a,b] — R, derivabild pe (a,b) si continud in capete

— 3Jee(ab), fe)= 7““3:5([’).
Demonstratie. Fie g : [a,b] — R,

@) = f(z) - LOZIO, IO 2T

g este derivabila pe (a,b) si continud in capete, iar g(a) = 0 = g(b) = I ¢ € (a,b), ¢'(¢c) =
0 = f/(c) = LSO [ ]

Observatie (consecintele lui Lagrange). Fie o functie f : I — R, I interval, derivabild pe I si
g:D— R, DCR interval. Atunci:

I fl(x)=0,Voxel < f(r)=ceR, Vael

II) f(x) =g (x), Ve el < f(x)=g(@)+c,ceR, Vael
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III) f'(z) >0, Vo € I < f crescdtoare pe I

(Daci A= {z € I| f'(x) =0} nu contine niciun interval, atunci f este strict crescdtoare pe I)

IV) 3Vh € V(xg), g derivabild pe Vo \ {zo}
g continud inxg p = Ig'(vg) =1

3 limgy,, g'(z) =1 €R

Teorema (Darboux). Fie o functie f : I — R, I interval, derivabild pe I. Atunci functia f' : I — R
are prop. Darbouz.

Demonstratie. Fie g : I — R, g(z) = f(z) — Az, derivabila.
Va<beI, VAER, fl(a) <A< f'(b) < ¢'(a) <0< ¢'(b)

Presupunem prin absurd c& g este injectivd pe [a,b], dar are P.D., deci este strict monotons pe
[a,b]. S& zicem ca este strict cresc.

— W >0,Vaxe(ab) = ¢ (a) >0 (Contradictie)

Dacai era strict descresc., atunci ¢’(b) < 0 (Contradictie).

= ¢ neinjectiva pe [a, b] = Fxg, 21 € [a,b], g(x0) = g(z1) Bole 3¢ (zo,21) C (a,b), ¢'(c) =0

= f'(¢) = \. Deci f" are P.D. [ |

Teorema (Cauchy). Fie functiile f,g : [a,b] — R, derivabile pe (a,b) si continue in capete, iar
J() 0, ¥ 1 € (a,b)

= Jce€ (a,b), =
g

Demonstratie. Fie h: [a,b] — R,

fla) = f(b)
g(a) —g(b)

g9(a)f(b) — g(b)f(a)
g(a) — g(b)

hz) = f(x) - g(x) +

h este derivabila pe (a,b) si continud in capete, iar h(a) = 0 = h(b) Bole 3.¢ (a,b), W(c) =
0 s L) _ f@=i)
g'(c) — gla)—g(b)"
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Teorema (I'Hospital §). Fie functiile f,g: I\ {xo} — R, I interval CR, zo € I'. Daca:

IVh € V(x0), f,9g derivabile pe Vo \ {zo}
lim, s, f(z) =0 =limy_,,, g(z) ()
— 4 lim —/=
Uy € V(xo), ¢ () £0, Vz e Uy z—z0 g(x)
: @) _ iy
3 limy_yy, 7z = leR
=g(z),

Demonstratie. Daca xg € R, fie F,G: IU{zo} - R, F(x) = f(z), G(x)
F(z9) = 0= G(x0). Din Cauchy pe [z,z0],2 € VoNUy = T ¢, € (x, 20

Fller) _ Fla) = Flwo) _ F(x) cozgy ['(ee) _ F(2)
G'(cz) G(z)—G(xo) G(z) g(cz)  G(x)
CF@) ) fe)
22 G@) 2 gle)  ethg(@)
i M— imF(x):imM:
Analog Ihﬁrgo Gl) =] 3 ml_mo Gl) ml_mo (@) l

r>T0

Daci xo = 00, aplicdm primul caz functiilor f(1) si g(1).

Vaeel\{xo}si

Teorema (I'Hospital =). Fie functiile f,g: 1\ {zo} = R, I interval CR, x¢ € I'. Daca:

IVh € V(xo), f,g derivabile pe Vo \ {zo}

limg 4, g(z) = £o0

fz

~

— J lim

AUy € V(x0), ¢ () £0, V2 €Uy z—z0 g()

I'(=)
g'(z)

=leR

3 limy_yy,

=1

Demonstratie. Fie sirul oarecare a, < xg,a, — xo. Aplicim Cauchy pe [a,,a,+1] = T ¢, €

(anvanJrl)an — Zo,

f(an+1) - f(an) - f/(cn) Heine ; Stolz f(an) Heine ﬂ
@) —glan) ~ glen) | gan) L 4 g
o f@) o fz)
Analog IILH%O m =l = 3 xligclo m =1

r>T0

=1



Definitie. Se numeste derivata laterala la stanga a functiei f : D — R, D C R, Intr-un punct
o € DN D’ urmatoarea limita, daca exista:

lim f(x) — f(z0) not

Tr—x0 —
r<xo z 0o

fi(xo)

Definitie. Se numeste derivata laterala la dreapta a functiei f : D — R, D C R, intr-un punct
o € D N D’ urmé&toarea limita, daca exista:

lim @) = F(@0) not

T—TQ —
r>T0 z Zo

fa(xo)

Observatie. Mai avem urmatoarele puncte remarcabile:

- punct stationar: f'(xg) =0

- punct de intoarcere: f continud in xo, fi(xo) = —fi(zo) = o0

- punct unghiular: f continud in xo, fl(zo) sau fi(zo) € R, fl(xo) # fi(x0)

- punct de inflexiune: f are derivatd si este continud in xg, converd pe o parte si concava pe cealaltd

Teorema (*). Fie functia f: I — R, I interval C R, de doud ori derivabild pe I. Daca f"(x) >
0, Vz €, atunct functia este convezd.

Demonstratie.
f"(x) >0 = f’ este crescitoare
Fie 1 < 92 < x3 € I. Din Lagrange:

f(l'l) — f(J?Q) si == (1‘2,1}3), f/(C) _ f('rQ) — f(.’L‘g)

3 '(c) =
c € (z1,22), f'(c) 71 — a9 To — X3

¢ < ¢ = f’(C) < fl(c/) — f(zl) — f(:EQ) < f(‘TQ) — f(:l?g)

T1 — X2 - To — X3

Vte(0,1), 3y € (z1,23), t = ij : 22 = (1-=t)(f(z2) — f(z3) < t(f(z1) — f(22))
= f(to1 + (1 —t)xs) <tf(z1) + (1 —1)f(x3), VE€(0,1)

Inegalitatea e valabild si pentru t € {0,1} = Vuxy,z3 €I, Vte0,1], f(ter + (1 —t)as) <
tf(z1) + (1 —t)f(x3) = functia este convexa. |
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5 Primitive @

6 Integrale definite &
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