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1 Limite de s, iruri

Definit, ie (majorant). Se numes,te majorant al unei mult, imi orice număr mai mare sau egal cu
toate elementele mult, imii.

Se numes,te minorant al unei mult, imi orice număr mai mic sau egal cu toate elementele mult, imii.

Definit, ie (supremum). Se numes,te supremum al unei mult, imi cel mai mic majorant, dacă există.

Definit, ia poate fi tradusă astfel:

M = supA ⇐⇒
{

M ≥ a, ∀ a ∈ A
∀ ε > 0, ∃ a ∈ A, M − ε < a ≤M

Se numes,te infimum al unei mult, imi cel mai mare minorant, dacă există. De asemenea, un
număr m este infimum al unei mult, imii A dacă −m este supremum al mult, imii −A.

Axiomă (Cantor). Orice mult,ime mărginită superior are supremum.

Pentru o mult, ime A mărginită inferior ∃ inf A = − sup(−A), ı̂ntrucât −A este mărginită
superior.

Definit, ie. S, ir de numere reale se numes,te orice funct, ie f : N→ R s, i se notează cu fn = f(n), ∀ n ∈
N.

Definit, ie. S, ir crescător se numes,te orice s, ir fn cu fi ≤ fj , ∀ i, j ∈ N, i < j.

S, ir strict crescător se numes,te orice s, ir crescător cu elemente distincte două câte două. Un s, ir
fn este (strict) descrescător dacă −fn este (strict) crescător. Un s, ir este (strict) monoton dacă este
(strict) crescător sau descrescător.

Definit, ie. S, ir mărginit superior se numes,te orice s, ir fn pentru care ∃ M ∈ R astfel ı̂ncât fn <
M, ∀ n ∈ N.

Un s, ir fn este mărginit inferior dacă −fn este mărginit superior. Un s, ir este mărginit dacă este
mărginit superior s, i inferior.

Un s, ir fn este nemărginit superior dacă nu este mărginit superior, adică ∀ M ∈ R, ∃ n0 ∈ N
cu fn0

> M . Un s, ir fn este nemărginit inferior dacă −fn este nemărginit superior. Un s, ir este
nemărginit dacă este nemărginit superior sau inferior.
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Definit, ie (limita de s, ir). Un punct l ∈ R se numes,te limită de s, ir dacă ∀ ε > 0, ∃ nε ∈ N astfel
ı̂ncât |fn − l| < ε, ∀ n ≥ nε. Dacă ∀ ε > 0, ∃ nε ∈ N astfel ı̂ncât fn > ε, ∀ n ≥ nε, atunci limita
s, irului este ∞. Dacă ∀ ε > 0, ∃ nε ∈ N astfel ı̂ncât fn < −ε, ∀ n ≥ nε, atunci limita s, irului este
−∞.

Se notează fn → l sau limn→∞ fn = l. Se observă că limita unui s, ir, dacă există, este unică
(demonstrat, ia este lăsată ca exercit, iu cititorului).

Definit, ie. Un s, ir se numes,te convergent dacă are limită reală (finită). Un s, ir se numes,te divergent
dacă nu e convergent (nu are limită sau are limită infinită).

Teoremă (Weierstrass). Un s, ir monoton s, i mărginit este convergent. Un s, ir monoton s, i nemărginit
are limită infinită (este divergent).

Demonstrat,ie. Fie xn un s, ir monoton s, i mărginit. Presupunem ı̂ntâi că este crescător. Fie mult, imea
A = {xn| ∀ n ∈ N}, mărginită superior (̂ıntrucât s, irul este mărginit superior), deci din Cantor
∃M = supA, adică

∀ a ∈ A, a ≤M

s, i
∀ ε > 0 ∃ a ∈ A, M − ε < a ≤M.

Dar a ∈ A, deci ∃ nε ∈ N, xnε = a. Fiind s, ir crescător, atunci xn ≥ xnε , ∀ n ≥ nε, as,adar

∀ ε > 0 ∃ nε ∈ N astfel ı̂ncât M − ε < xnε ≤ xn ≤M, ∀ n ≥ nε ⇐⇒ xn →M ∈ R,

prin urmare este convergent. Dacă s, irul este descrescător, atunci −xn este crescător s, i conform
cazului anterior converge la M. Deci xn → −M , adică este convergent.

Dacă xn este crescător s, i nemărginit superior, atunci ∀ ε > 0 ∃ nε ∈ N, xnε
> ε s, i xn ≥

xnε
, ∀ n ≥ nε. Atunci ∀ ε > 0 ∃ nε ∈ N, xn ≥ xnε

> ε, ∀ n ≥ nε ⇐⇒ xn → ∞. Dacă
este descrescător s, i nemărginit inferior, atunci −xn crescător s, i nemărginit superior =⇒ −xn →
∞ =⇒ xn → −∞. �

Definit, ie (subs, ir). Un s, ir sn se numes,te subs, ir al s, irului fn dacă ∃ kn ∈ N strict crescător astfel
ı̂ncât sn = fkn

.

Orice subs, ir al unui s, ir cu limită tinde la aceeas, i limită. As,adar, dacă un s, ir are două subs, iruri
cu limite distincte, atunci nu are limită.

Teoremă (Criteriul Cles,telui). Fie xn un s, ir de numere reale astfel ı̂ncât an ≤ xn ≤ bn, ∀ n ≥ n0,
unde an → l, bn → l ∈ R. Atunci xn → l.
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Demonstrat,ie.
0 ≤ xn − an ≤ bn − an → l − l = 0

=⇒ ∀ ε > 0 ∃ nε ∈ N astfel ı̂ncât 0 ≤ xn − an ≤ bn − an ≤ ε, ∀ n ≥ max(nε, n0) = Nε

⇐⇒ xn − an → 0

=⇒ xn = (xn − an) + an → 0 + l = l =⇒ xn → l

�

Dacă an →∞, atunci la fel s, i xn →∞. Dacă bn → −∞, atunci la fel s, i xn → −∞.

Observat, ie. S, irul xn = an, |a| < 1 este convergent la 0.

Demonstrat,ie.∣∣∣∣(1

a

)n∣∣∣∣ =

(
1 +

1

|a|
− 1

)n

≥ 1 + n

(
1

|a|
− 1

)
→∞ (ineg. lui Bernoulli)

|xn − 0| = |a|n =
1(
1
|a|

)n → 1

∞
= 0 =⇒ xn → 0

�

Teoremă (Criteriul Raportului). Fie xn un s, ir de numere reale astfel ı̂ncât

lim
n→∞

|xn+1

xn
| < 1.

Atunci xn → 0.

Demonstrat,ie. Fie l = limn→∞ |xn+1

xn
| =⇒ 0 < |xn+1| < (l + ε) · |xn|, ∀ n ≥ nε. Fixăm

ε = ε0 = 1−l
2 > 0 =⇒ l + ε = 1+l

2 < 1. Prin urmare ∃ n0 ∈ N, 0 < |xn+1| < l+1
2 ·

|xn|, ∀ n ≥ n0 =⇒ 0 < |xn| < ( l+1
2 )n−n0 · |xn0

|, ∀ n ≥ n0 (induct, ie). Din Criteriul Cles,telui, s, irul
|xn| → 0 =⇒ xn → 0. �

Lemă (Cesàro). Orice s, ir mărginit are cel put,in un subs, ir convergent.

Demonstrat,ie. Fie s, irul mărginit xn ( ∃ a0, b0, a0 < xn < b0, ∀ n ∈ N) s, i s, irurile an, bn, unde

an = an−1, bn = an−1+bn−1

2 dacă intervalul (an, bn) cont, ine o infinitate de elemente ale s, irului

xn, iar dacă nu, an = an−1+bn−1

2 , bn = bn−1. Astfel, există un subs, ir sn al s, irului xn astfel ı̂ncât
an < sn < bn, ∀ n ∈ N. Se observă că an este crescător, iar bn este descrescător, ambele mărginite.
Deci, din Weierstrass, cele două s, iruri sunt convergente, la aceeas, i limită l ∈ [a0, b0], ı̂ntrucât
bn − an = b0−a0

2n → 0. Atunci, din Criteriul Cles,telui, sn → l. As,adar, există un subs, ir convergent
twin! �
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Teoremă (Stolz ∗∞ ). Fie s, irurile xn, yn ∈ R, unde yn este s, ir nemărginit superior, strict crescător
s, i pozitiv, iar

lim
n→∞

xn+1 − xn
yn+1 − yn

= l ∈ R ∪ {−∞,+∞}.

Atunci
lim

n→∞

xn
yn

= l.

Demonstrat,ie. Dacă l ∈ R, atunci ∀ ε > 0 ∃ nε ∈ N, l − ε
2 < xn+1−xn

yn+1−yn
< l + ε

2 , ∀ n ≥ nε.

=⇒ (l− ε
2 )(yn+1−yn) < xn+1−xn < (l+ ε

2 )(yn+1−yn). Adunând relat, iile pentru n−1, n−2, ..., nε

se obt, ine: (l − ε
2 )(yn − ynε

) < xn − xnε
< (l + ε

2 )(yn − ynε
) =⇒ (l − ε

2 )(1 − ynε

yn
) +

xnε

yn
< xn

yn
<

(l + ε
2 )(1− ynε

yn
) +

xnε

yn
.

lim
n→∞

(l − ε

2
)(1− ynε

yn
) +

xnε

yn
= l − ε

2
=⇒ (l − ε

2
)(1− ynε

yn
) +

xnε

yn
> (l − ε

2
)− ε

2
= l − ε, ∀ n ≥ n′ε

lim
n→∞

(l +
ε

2
)(1− ynε

yn
) +

xnε

yn
= l +

ε

2
=⇒ (l +

ε

2
)(1− ynε

yn
) +

xnε

yn
< (l +

ε

2
) +

ε

2
= l + ε, ∀ n ≥ n′′ε

=⇒ l − ε < xn
yn

< l + ε, ∀ n ≥ max(nε, n
′
ε, n
′′
ε ) = Nε ⇐⇒

xn
yn
→ l.

Dacă l = +∞, atunci ∀ ε > 0 ∃ nε ∈ N, xn+1−xn

yn+1−yn
> 2ε, ∀ n ≥ nε =⇒ xn+1−xn > 2ε(yn+1−yn).

Adunând relat, iile pentru n − 1, n − 2, ..., nε se obt, ine: xn − xnε > 2ε(yn − ynε) =⇒ xn

yn
>

2ε(1 − ynε

yn
) +

xnε

yn
→ 2ε =⇒ 2ε(1 − ynε

yn
) +

xnε

yn
> 2ε − ε = ε, ∀ n ≥ n′ε =⇒ xn

yn
> ε, ∀ n ≥

max(nε, n
′
ε) ⇐⇒ xn

yn
→ +∞. Dacă l = −∞, atunci aplicăm cazul anterior pentru s, irurile

−xn, yn =⇒ −xn

yn
→ +∞ =⇒ xn

yn
→ −∞. �

Teoremă (Stolz 0
0 ). Fie s, irurile xn, yn ∈ R, unde yn este strict descrescător, iar

lim
n→∞

xn = lim
n→∞

yn = 0,

lim
n→∞

xn+1 − xn
yn+1 − yn

= l ∈ R ∪ {−∞,+∞}.

Atunci
lim

n→∞

xn
yn

= l.

Demonstrat,ie. Dacă l ∈ R, atunci ∀ ε > 0 ∃ nε ∈ N, l − ε < xn+1−xn

yn+1−yn
< l + ε, ∀ n ≥ nε =⇒

(l − ε)(yn − yn+1) < xn − xn+1 < (l + ε)(yn − yn+1). Adunând relat, iile pentru n, n + 1, ...,m se
obt, ine: (l − ε)(yn − ym) < xn − xm < (l + ε)(yn − ym). Trecem pe m la infinit: (l − ε)yn <
xn < (l + ε)yn =⇒ l − ε < xn

yn
< l + ε, ∀ n ≥ nε ⇐⇒ xn

yn
→ l. Dacă l = +∞, atunci

∀ ε > 0 ∃ nε ∈ N, xn+1−xn

yn+1−yn
> ε, ∀ n ≥ nε =⇒ xn+1 − xn < ε(yn+1 − yn). Adunând relat, iile
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pentru n, n+ 1, ...,m se obt, ine: xm− xn < ε(ym− yn). Trecem pe m la infinit: −xn < −ε · yn =⇒
xn

yn
> ε, ∀ n ≥ nε ⇐⇒ xn

yn
→ +∞. Dacă l = −∞, atunci aplicăm cazul anterior pentru s, irurile

−xn, yn =⇒ −xn

yn
→ +∞ =⇒ xn

yn
→ −∞. �

Lemă (Cesàro II). Dacă un s, ir mărginit nu converge la o limită l ∈ R, atunci există cel put,in un
subs, ir convergent al acestuia care nu tinde la l.

Demonstrat,ie. Fie s, irul xn care nu converge la l =⇒ ∃ ε0 > 0 astfel ı̂ncât ∀ n ∈ N ∃ n0 ≥ n cu
|xn0 − l| > ε0.

=⇒ ∃ k0 ≥ 0 astfel ı̂ncât |xk0 − l| > ε0, ∃ kn ≥ kn−1 + 1 astfel ı̂ncât |xkn − l| > ε0, ∀ n ∈ N∗

=⇒ kn este strict crescător, iar xkn
este subs, ir al s, irului xn, cu proprietatea |xkn

−l| > ε0, ∀ n ∈ N

xkn
s, ir mărginit

Cesaro
=⇒ ∃ sn subs, ir convergent al s, irului xkn

=⇒ sn → l′ ∈ R

Dar |sn − l| > ε0, ∀ n ∈ N =⇒ |l′ − l| ≥ ε0 > 0 =⇒ l 6= l′

�

Teoremă (*). Fie funct,ia f : I → J (I, J intervale ⊆ R), surjectivă s, i monotonă, s, i un s, ir
xn ∈ I, xn → l ∈ I. Atunci f(xn)→ f(l).

Demonstrat,ie. Luăm f crescătoare. Presupunem prin absurd că f(xn) nu converge la f(l)
lema
=⇒

∃ sn un s, ir strict crescător cu f(xsn)→ λ 6= f(l).

xn convergent, deci mărginit =⇒ ∃ m,M ∈ I,m ≤ xn ≤M, ∀ n ∈ N =⇒ f(m) ≤ f(xsn) ≤ f(M)

=⇒ f(m) ≤ λ ≤ f(M) =⇒ λ ∈ J surjectivitate
=⇒ ∃ s ∈ I cu f(s) = λ =⇒ f(xsn)→ f(s)

Abordăm cazul in care f(s) < f(l)
surjectivitate

=⇒ ∃ a ∈ I, f(s) < f(a) < f(l)

cresc
=⇒ s < a < l. Dar xsn → l =⇒ ∃ n0 ∈ N cu a < xsn , ∀ n ≥ n0 =⇒ f(a) ≤ f(xsn)

=⇒ f(a) ≤ f(s) =⇒ a ≤ s (Fals)

Analog cazul când f(s) > f(l) =⇒ λ = f(s) = f(l) (Contradict, ie) =⇒ f(xn) → f(l). Pentru f
descrescătoare aplicăm rat, ionamentul anterior cu −f =⇒ −f(xn)→ −f(l) =⇒ f(xn)→ f(l) �

6



Fie s, irul en =

(
1 +

1

n

)n

, n ∈ N∗.

Observat, ie. S, irul en este strict monoton s, i mărginit, deci convergent.

Demonstrat,ie.

n+1

√
1 ·
(

1 +
1

n

)n

<
1 + (1 + 1

n ) · n
n+ 1

(ineg. mediilor)

=⇒ en < en+1 =⇒ s, irul este strict monoton (1)

en =

n∑
k=0

Ck
n ·

1

nk
=

1

0!
+

1

1!
+

n∑
k=2

1

k!
· n(n− 1)(n− 2)...(n− k + 1)

nk
=

=
1

0!
+

1

1!
+

n∑
k=2

1

k!
·
(

1− 1

n

)(
1− 2

n

)
...

(
1− k − 1

n

)
<

n∑
k=0

1

k!

not
= En

n∑
k=0

1

k!
<

1

0!
+

1

1!
+

n∑
k=2

1

k(k − 1)
= 2 +

n∑
k=2

k − (k − 1)

k(k − 1)
= 2 +

n∑
k=2

1

(k − 1)
− 1

k
= 3− 1

n
< 3

en =

(
1 +

1

n

)n

≥ 1 + n · 1

n
= 2 (ineg. lui Bernoulli)

=⇒ 2 ≤ en < 3, ∀ n ∈ N∗ =⇒ s, irul este mărginit (2)

1,2
=⇒ en → l ∈ R (Weierstrass)

�

Definit, ie.

e
def
= lim

n→∞

(
1 +

1

n

)n

Teoremă (Neper).
1

n+ 1
< ln(n+ 1)− ln(n) <

1

n
, ∀ n ∈ N∗
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Demonstrat,ie. S, irul en este strict crescător s, i en → e =⇒ en < e.(
1 +

1

n

)n

< e ⇐⇒ ln

(
n+ 1

n

)n

< ln e ⇐⇒ ln(n+ 1)− ln(n) <
1

n

Fie fn =
(
1 + 1

n

)n+1
.

n+2

√
1 ·
(

n

n+ 1

)n+1

<
1 + n

n+1 · (n+ 1)

n+ 2
(ineg. mediilor)

=⇒
(

n

n+ 1

)n+1

<

(
n+ 1

n+ 2

)n+2

=⇒ fn > fn+1

Deci fn este strict descrescător s, i fn → e =⇒ fn > e.(
1 +

1

n

)n+1

> e ⇐⇒ ln

(
n+ 1

n

)n+1

> ln e ⇐⇒ ln(n+ 1)− ln(n) >
1

n+ 1

�

Observat, ie. S, irul En → e.

Demonstrat,ie. Cunoas,tem că:

en =
1

0!
+

1

1!
+

n∑
k=2

1

k!
·
(

1− 1

n

)(
1− 2

n

)
...

(
1− k − 1

n

)
Din Inegalitatea lui Bernoulli (generalizată):(

1− 1

n

)(
1− 2

n

)
...

(
1− k − 1

n

)
> 1− 1

n
− 2

n
− ...− k − 1

n
= 1− k(k − 1)

2n

=⇒ en > En −
1

2n

n∑
k=2

k(k − 1)

k!
= En −

1

2n

n∑
k=2

1

(k − 2)!
= En −

En−2

2n

=⇒ 0 > en − En > −
En−2

2n
→ 0 (En este sir marginit) =⇒ En = (En − en) + en → 0 + e = e

�

Observat, ie. Numărul e este irat,ional.
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Demonstrat,ie.

En+m−En =

m∑
k=1

1

(n+ k)!
=

1

(n+ 1)!

(
1 +

m∑
k=2

1

(n+ 2)(n+ 3)...(n+ k)

)
<

1

(n+ 1)!

m∑
k=1

1

(n+ 2)k−1
=

=
1

(n+ 1)!
·

1− 1
(n+2)m

1− 1
n+2

<
n+ 2

n! · (n+ 1)2
<

1

n · n!
, ∀ n ∈ N∗

Trecem pe m la infinit:

0 < e− En <
1

n · n!
=⇒ 0 < n · n! · e− n · n! · En < 1, ∀ n ∈ N∗

Dacă presupunem prin absurd că e ∈ Q, =⇒ e = p
q , p, q ∈ Q∗, (p, q) = 1, atunci:

0 < q! · p− q · q! · Eq < 1 (Contradict, ie, ı̂ntrucât nu există numere naturale ı̂n (0,1))

=⇒ e /∈ Q

�

Teoremă (Criteriul lui e). Fie s, irurile xn → ±∞, yn → 0. Atunci:

lim
n→∞

(
1 +

1

xn

)xn

= e

lim
n→∞

(1 + yn)
1

yn = e

Demonstrat,ie. Din [xn] ≤ xn < [xn] + 1:(
1 +

1

[xn] + 1

)[xn]

<

(
1 +

1

xn

)xn

<

(
1 +

1

[xn]

)[xn]+1

=⇒
(

1 +
1

[xn] + 1

)[xn]+1

· 1

1 + 1
[xn]+1

<

(
1 +

1

xn

)xn

<

(
1 +

1

[xn]

)[xn]

·
(

1 +
1

[xn]

)

Presupunem că xn → ∞. Atunci [xn] → ∞, [xn] + 1 → ∞. S, irurile
(

1 + 1
[xn]+1

)[xn]+1

si(
1 + 1

[xn]

)[xn]

sunt formate din subs, iruri ale s, irului
(
1 + 1

n

)n
, deci au aceeas, i limită, adică e. As,adar,

din Criteriul Cles,telui rezultă că limn→∞

(
1 + 1

xn

)xn

= e. Dacă xn → −∞, atunci aplicăm cazul

anterior pentru s, irul −xn − 1:

e = lim
n→∞

(
1 +

1

−xn − 1

)−xn−1

= lim
n→∞

(
xn

xn + 1

)−xn−1

= lim
n→∞

(
xn + 1

xn

)xn+1

= lim
n→∞

(
1 +

1

xn

)xn
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Pentru yn, aplicăm primul caz pentru subs, irul pozitiv al s, irului 1
yn

(dacă există) s, i al doilea caz

pentru subs, irul negativ al acestuia (dacă există). Avem apoi:

e = lim
n→∞

(
1 +

1
1
yn

) 1
yn

= lim
n→∞

(1 + yn)
1

yn

�

Observat, ie. Fie xn → l ∈ R, atunci:

sinxn → sin l, cosxn → cos l

Demonstrat,ie.

0 < sinx < x < tg x, ∀ x ∈
(

0,
π

2

)
=⇒ ∃ n0 ∈ N astfel ı̂ncât sinxn < xn < tg xn, ∀ n ≥ n0

| sinxn − sin l| =
∣∣∣∣2 sin

(
xn − l

2

)
cos

(
xn + l

2

)∣∣∣∣ < 2 · xn − l
2
· 1→ 0

=⇒ sinxn → sin l

cosxn = sin
(
xn +

π

2

)
→ sin

(
l +

π

2

)
= cos l

�

Observat, ie. Avem următoarele limite remarcabile (xn → 0):

a) lim
n→∞

ln(1 + xn)

xn
= 1

b) lim
n→∞

axn − 1

xn
= ln a

c) lim
n→∞

(1 + xn)r − 1

xn
= r

d) lim
n→∞

sin(xn)

xn
= 1

e) lim
n→∞

tg(xn)

xn
= 1

f) lim
n→∞

arcsin(xn)

xn
= 1

g) lim
n→∞

arctg(xn)

xn
= 1
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Demonstrat,ie.

a) lim
n→∞

ln(1 + xn)

xn
= lim

n→∞
ln(1 + xn)

1
xn = ln

(
lim

n→∞
(1 + xn)

1
xn

)
= ln e = 1

b) lim
n→∞

axn − 1

xn
= lim

n→∞

axn − 1

ln(1 + (axn − 1))
· ln(1 + (axn − 1)

xn
= 1 · lim

n→∞

ln(axn)

xn
= ln a

c) lim
n→∞

(1 + xn)r − 1

xn
= lim

n→∞

(1 + xn)r − 1

ln(1 + (1 + xn)r − 1)
· ln(1 + xn)r

xn
= r · lim

n→∞

ln(1 + xn)

xn
= r

d) ∃ n0 ∈ N astfel ı̂ncât sinxn < xn < tg xn, ∀ n ≥ n0 =⇒ 1 <
xn

sinxn
<

1

cosxn
→ 1 =⇒ lim

n→∞

sin(xn)

xn
= 1

e) lim
n→∞

tg(xn)

xn
= lim

n→∞

1

cosxn
· sin(xn)

xn
= 1

f) lim
n→∞

arcsin(xn)

xn
= lim

n→∞

arcsin(xn)

sin(arcsin(xn))
= 1

g) lim
n→∞

arctg(xn)

xn
= lim

n→∞

arctg(xn)

tg(arctg xn)
= 1

�

Problema 1.1. Demonstrat, i că s, irul

Hn = 1 +
1

2
+

1

3
+ ...+

1

n

tinde la infinit.

Problema 1.2. Demonstrat, i că s, irul

cn = 1 +
1

2
+

1

3
+ ...+

1

n
− lnn

este convergent.

Problema 1.3. Demonstrat, i că

lim
n→∞

lnn

n
= lim

n→∞

n

2n
= lim

n→∞

2n

n!
= lim

n→∞

n!

nn
= 0.
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2 Limite de funct, ii

Definit, ie (vecinătate). O mult, ime V se numes,te vecinătate a punctului x0 ∈ R dacă ∃ ε > 0 cu
(x0 − ε, x0 + ε) ⊂ V. O mult, ime V se numes,te vecinătate a lui ∞ dacă ∃ ε > 0 cu (ε,∞) ⊂ V. O
mult, ime V se numes,te vecinătate a lui −∞ dacă ∃ ε > 0 cu (−∞,−ε) ⊂ V .

Se notează cu V(x0) mult, imea vecinătăt, ilor unui punct x0.

Definit, ie. R = R ∪ {−∞,∞}

Definit, ie (punct de acumulare). Un punct a ∈ D se numes,te punct de acumulare a mult, imii D
dacă

∀ V ∈ V(a), (V \ {a}) ∩D 6= ∅

Se notează cu D′ mult, imea punctelor de acumulare a mult, imii D.

Observat, ie.
a ∈ D′ ⇐⇒ ∃ xn ∈ D \ {a} cu xn → a

Definit, ie (limita de funct, ie). Un punct l ∈ R se numes,te limita unei funct, ii f : D → R, D ⊆ R,
ı̂n punctul x0 ∈ D′ dacă oricare vecinătate V a lui l, există o vecinătate U a lui x0 astfel ı̂ncât
f(x) ∈ V, ∀ x ∈ U ∩D,x 6= x0.

l
not
= lim

x→x0

f(x)

O exprimare echivalentă cu ε− δ:

lim
x→x0∈R

f(x) = l ∈ R ⇐⇒ ∀ ε > 0 ∃ δ > 0 astfel ı̂ncât ∀ x cu |x− x0| < δ avem |f(x)− l| < ε

lim
x→x0∈R

f(x) =∞ ⇐⇒ ∀ ε > 0 ∃ δ > 0 astfel ı̂ncât ∀ x cu |x− x0| < δ avem f(x) > ε

lim
x→∞

f(x) = l ∈ R ⇐⇒ ∀ ε > 0 ∃ δ > 0 astfel ı̂ncât ∀ x > δ avem |f(x)− l| < ε

Restul cazurilor (6) sunt lăsate ca exercit, iu cititorului.
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Teoremă (Criteriul lui Heine). Fie x0 ∈ D′, l ∈ R, f : D → R.

∃ l = lim
x→x0

f(x) ⇐⇒ ∀ xn ∈ D \ {x0} cu xn → x0, f(xn)→ l

Demonstrat,ie. ” =⇒ ”

∃ l = lim
x→x0

f(x) ⇐⇒ ∀ V ∈ V(l) ∃ U ∈ V(x0) cu f(U ∩D \ {x0}) ⊂ V

xn → x0 =⇒ ∃ nε ∈ N ∀ n ≥ nε cu xn ∈ U =⇒ f(xn) ∈ V
=⇒ ∀ V ∈ V(l) ∃ nε ∈ N astfel ı̂ncât f(xn) ∈ V, ∀ n ≥ nε ⇐⇒ f(xn)→ l

”⇐=” Presupunem prin absurd că limita lui f ı̂n x0 NU este l.

=⇒ ∃ V0 ∈ V(l) ∀ U ∈ V(x0) ∃ x ∈ U ∩D \ {x0} astfel ı̂ncât f(x) /∈ V0

=⇒ ∃ xn ∈ U ∩D \ {x0}, xn → l, astfel ı̂ncât f(xn) /∈ V0 =⇒ f(xn) 9 l (Contradict, ie)

�

Observat, ie. Dacă ∃ xn, yn ∈ D \ {a}, xn, yn → a ∈ D′ astfel ı̂ncât

lim
n→∞

f(xn) 6= lim
n→∞

f(yn)

Atunci @ lim
x→a

f(x)

Observat, ie. Conform criteriului lui Heine, toate limitele remarcabile de la s, iruri sunt valabile s, i
pentru funct,ii:

a) lim
x→0

ln(1 + x)

x
= 1

b) lim
x→0

ax − 1

x
= ln a

c) lim
x→0

(1 + x)r − 1

x
= r

d) lim
x→0

sin(x)

x
= 1

e) lim
x→0

tg(x)

x
= 1

f) lim
x→0

arcsin(x)

x
= 1

g) lim
x→0

arctg(x)

x
= 1

De asemenea, valabile sunt s, i criteriile de convergent,ă (lăsate ca exercit,iu cititorului).
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Definit, ie (limita laterală). Un punct l ∈ R se numes,te limita laterală la stânga a unei funct, ii
f : D → R, D ⊆ R, ı̂n punctul x0 ∈ (D ∩ (−∞, x0))′ dacă oricare vecinătate V a lui l, există o
vecinătate U a lui x0 astfel ı̂ncât f(x) ∈ V, ∀ x ∈ U ∩D,x < x0.

l
not
= lim

x→x0
x<x0

f(x) sau lim
x↗x0

f(x) sau f(x0 − 0)

Un punct l ∈ R se numes,te limita laterală la dreapta a unei funct, ii f : D → R, D ⊆ R, ı̂n punctul
x0 ∈ (D ∩ (x0,∞))′ dacă oricare vecinătate V a lui l, există o vecinătate U a lui x0 astfel ı̂ncât
f(x) ∈ V, ∀ x ∈ U ∩D,x > x0.

l
not
= lim

x→x0
x>x0

f(x) sau lim
x↘x0

f(x) sau f(x0 + 0)

Observat, ie.
∃ lim

x→x0
x<x0

f(x) = lim
x→x0
x>x0

f(x) = l =⇒ ∃ lim
x→x0

f(x) = l

Teoremă (*). O funct,ie monotonă f : I → R (I ⊆ R interval) are limite laterale la stânga s, i
dreapta ı̂n orice punct interior s, i câte o limită laterală ı̂n fiecare dintre capete.

Demonstrat,ie. Presupunem că f crescătoare. Fie x0 punct interior lui I si A = {f(x) | x < x0} =⇒
a ≤ f(x0), ∀ a ∈ A =⇒ A mărginită superior.

Cantor
=⇒ ∃M = supA ⇐⇒ M majorant s, i ∀ ε > 0, ∃ xε < x0 cu M − ε < f(xε) ≤M

f cresc. =⇒ f(x) ≥ f(xε), ∀ x > xε =⇒ ∀ ε > 0, ∃ xε < x0 astfel ı̂ncât ∀ x ∈ (xε, x0), M−ε < f(x) ≤M

⇐⇒ lim
x→x0
x<x0

f(x) = M

Asemanător se demonstrează s, i existent,a limitei laterale la dreapta, egală cu inf{f(x) | x > x0}.
Dacă f descrescătoare, atunci aplicăm cazul anterior pentru −f =⇒ −f are limite laterale =⇒ f
are limite laterale ı̂n x0.

În capătul din stânga există limita laterală la dreapta egală cu inf{f(x) | x ∈ I}. În capătul din
dreapta există limita laterală la stânga egală cu sup{f(x) | x ∈ I}. �
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3 Continuitate

Definit, ie (continuitatea ı̂ntr-un punct). O funct, ie f : D → R, D ⊆ R, se numes,te continuă ı̂ntr-un
punct x0 ∈ D daca ∀ V ∈ V(f(x0)), ∃ U ∈ V(x0) astfel ı̂ncât f(x) ∈ V, ∀ x ∈ U ∩D.

O funct, ie este continuă pe o mult, ime ⊆ R dacă e continuă in fiecare punct al ei.

Observat, ie. O funct,ie este continuă in toate punctele izolate ale domeniului.

O funct,ie f : D → R, D ⊆ R, este continuă ı̂n x0 ∈ D ∩D′ dacă s, i numai dacă

lim
x→x0

f(x) = f(x0)
Heine⇐⇒ ∀ an ∈ D, an → x0, f(an)→ f(x0)

Observat, ie. Dacă ∃ an, bn → x0 ∈ D, iar

lim
n→∞

f(an) 6= lim
n→∞

f(bn)

=⇒ f nu este continuă ı̂n x0.

Dacă
lim

x→x0
x<x0

f(x), f(x0), lim
x→x0
x>x0

f(x)

există s, i nu sunt toate egale, atunci f nu este continuă ı̂n x0.

Definit, ie. Orice punct (al domeniului) ı̂n care o funct, ie nu este continuă se numes,te punct de
discontinuitate. Dacă limitele laterale sunt ambele finite, se numes,te punct de discontinuitate de
spet,a I, iar dacă nu, punct de discontinuitate de spet,a II (o limita laterală fie nu există, fie este
infinită).

Teoremă (Weierstrass). O funct,ie continuă definită pe un interval ı̂nchis este mărginită s, i ı̂s, i
atinge marginile.

Demonstrat,ie. Fie f : [a, b]→ R. Presupunem prin absurd că este nemărginită.

=⇒ ∃ un ∈ [a, b] cu f(un)→ ±∞, dar s, irul este mărginit
Cesaro
=⇒ ∃ kn strict cresc, ukn

→ l ∈ [a, b]
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=⇒ f(ukn)→ f(l) 6= ±∞ (Contradict, ie)

Presupunerea este falsă, deci funct, ia este mărginită
Cantor
=⇒ ∃M = sup(Imf ), m = − sup(−Imf ) =

inf(Imf ).

=⇒ ∃ xn ∈ [a, b], f(xn)→M dar s, irul este mărginit
Cesaro
=⇒ ∃ sn strict cresc, xsn → l′ ∈ [a, b]

=⇒ f(xsn)→ f(l′), f(xsn)→M =⇒ M = f(l′) ∈ Imf

Analog m ∈ Imf =⇒ concluzia. �

Teoremă (*). Fie o funct,ie continuă f : [a, b]→ R cu f(a)·f(b) < 0. Atunci ∃ c ∈ (a, b), f(c) = 0.

Demonstrat,ie. Luăm cazul ı̂n care f(a) < 0 < f(b).

Fie mult, imea A = {x ∈ [a, b] | f(x) > 0} =⇒ A ⊂ (a, b]
Cantor
=⇒ ∃ c = − sup(−A) = inf A ≥ a.

c = inf A =⇒ ∃ xn ∈ A, xn → c =⇒ f(xn)→ f(c), dar f(xn) > 0 =⇒ f(c) ≥ 0 > f(a) =⇒ c > a

Fie an = c− c− a
n

< c =⇒ an /∈ A =⇒ f(an) < 0

an → c =⇒ f(an)→ f(c) =⇒ f(c) ≤ 0 =⇒ 0 ≤ f(c) ≤ 0 =⇒ f(c) = 0, c ∈ (a, b)

Pentru cazul f(a) > 0 > f(b), aplicăm cazul anterior pentru −f =⇒ ∃ c ∈ (a, b), −f(c) =
0 =⇒ f(c) = 0. �

Definit, ie (proprietatea Darboux). O funct, ie f : D → R, D ⊆ R, are proprietatea Darboux pe un
interval I ⊆ D dacă ∀ a, b ∈ I, a < b s, i ∀ λ cuprins ı̂ntre f(a) s, i f(b), ∃ c ∈ (a, b), f(c) = λ.

Observat, ie. O funct,ie continuă pe un interval are prop. Darboux pe acel interval.

Demonstrat,ie. Fie f : D → R, D ⊆ R, continuă pe intervalul I ⊆ D s, i a, b ∈ I, a < b, alese
oarecare.

Fie g : [a, b]→ R, g(x) = f(x)− λ =⇒ g(a) · g(b) < 0

Teorema
=⇒ ∃ c ∈ (a, b), g(c) = 0 =⇒ f(c) = λ

�

Observat, ie. Dacă f are prop. Darboux pe un interval, atunci are s, i pe orice subinterval al acestuia.
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Observat, ie. Nu toate funct,iile cu prop. Darboux sunt continue.

Demonstrat,ie. f : R→ R, f(x) =

{
sin 1

x , x 6= 0
0, x = 0

, nu este continuă ı̂n 0, dar are P.D. pe R:

Fie xn = (−1)n
1

arcsinλ+ πn
→ 0, f(xn) = (−1)n sin(arcsinλ+ πn) = (−1)2nλ = λ

∀ a ≤ 0 ≤ b ∈ R, a 6= b, ∀ λ ∈ (f(a), f(b)), ∃ n0 ∈ N, xn0
∈ (a, b), f(xn0

) = λ

�

Observat, ie.
f are prop. Darboux pe intervalul I =⇒ f(I) este interval.

Demonstrat,ie. Presupunem prin absurd că f(I) nu este interval =⇒ ∃ a, b ∈ I, λ ∈ R cu
f(a) < λ < f(b), λ /∈ f(I)

P.D.
=⇒ ∃ c ∈ (a, b), f(c) = λ ∈ f(I) (Contradict, ie)

�

Observat, ie. Dacă Imf nu este interval, atunci f nu are prop. Darboux.

Teoremă (*). O funct,ie cu prop. Darboux pe un interval nu are puncte de discontinuitate de spet,a
I pe acel interval.

Demonstrat,ie. Fie f : I → R, I interval ⊆ R. Presupunem prin absurd că ∃ a ∈ I, f(a − 0) 6=
f(a+ 0). Notăm m = f(a− 0), M = f(a+ 0) s, i presupunem m < M .

∃ U1 ∈ V(a), f(x) ∈
(
m− M −m

3
, m+

M −m
3

)
, ∀ x ∈ U1 ∩ (−∞, a) ∩ I

∃ U2 ∈ V(a), f(x) ∈
(
M − M −m

3
, M +

M −m
3

)
, ∀ x ∈ U2 ∩ (a,∞) ∩ I

J = (U1 ∩ (−∞, a) ∩ I) ∪ (U2 ∩ (a,∞) ∩ I) este interval

f(J) ∩
(
m− M −m

3
, m+

M −m
3

)
6= ∅ s, i f(J) ∩

(
M − M −m

3
, M +

M −m
3

)
6= ∅

Dar f(J) *
[
m+

M −m
3

, M − M −m
3

]
=⇒ f(J) nu este interval. (Contradict, ie)

Dacă m > M se aplică primul caz pentru −f =⇒ −f(J) nu este interval, deci nici f(J) =⇒
Contradict, ie. �
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Teoremă (*). O funct,ie injectivă cu prop. Darboux este strict monotonă.

Demonstrat,ie. Fie f : I → R, I interval ⊆ R, injectivă cu P.D. Presupunem prin absurd că f nu
este monotonă =⇒ ∃ x0 < x1 < x2 ∈ I, f(x0) < f(x1) > f(x2) sau f(x0) > f(x1) < f(x2).

Luăm ı̂ntai cazul când f(x0) < f(x1) > f(x2).

∃ λ ∈ (max {f(x0), f(x2)} , f(x1)) =⇒ f(x0) < λ < f(x1) > λ > f(x2)

P.D.
=⇒ ∃ c1 ∈ (x0, x1), c2 ∈ (x1, x2), f(c1) = f(c2) = λ (Contradict, ie – funct, ia este injectivă)

Pentru al doilea caz, aplicăm primul caz funct, iei −f =⇒ Contradict, ie =⇒ concluzia. �

Teoremă (*). O funct,ie monotonă cu prop. Darboux este continuă.

Demonstrat,ie. Funct, ia este monotonă, deci are limite laterale in fiecare punct. Dar are P.D., as,adar
nu are puncte de discontinuitate de spet,a I. Prin urmare limitele laterale sunt egale cu valoarea
funct, iei in acel punct, adică funct, ia este continuă. �

Observat, ie. O funct,ie injectivă cu prop. Darboux este continuă.

Teoremă (*). O funct,ie surjectivă s, i monotonă definită pe un interval cu valori ı̂ntr-un interval
este continuă.

Demonstrat,ie. Funct, ia este monotonă, deci are limite laterale in fiecare punct. Dacă acestea ar fi
distincte, funct, ia n-ar fi surjectivă. Prin urmare limitele laterale sunt egale cu valoarea funct, iei in
acel punct, adică funct, ia este continuă. �

Observat, ie. Fie o funct,ie f : I → J, I, J ⊆ R intervale, continuă s, i inversabilă. Atunci funct,ia
inversă f−1 : J → I este de asemenea continuă.

Demonstrat,ie. Funct, ia f este inversabilă ⇐⇒ bijectivă s, i are P.D. =⇒ strict monotonă. Pre-
supunem că este strict crescătoare.

=⇒ ∀ x, y ∈ I, x < y ⇐⇒ f(x) < f(y) =⇒ f(f−1(x)) = x < y = f(f−1(y)) ⇐⇒ f−1(x) < f−1(y)

=⇒ Inversa este strict crescătoare. Din faptul că este surjectivă s, i monotonă, definită pe un
interval cu valori ı̂ntr-un interval rezultă că este continuă. Dacă f este strict descrescătoare, se
aplică cazul anterior pentru −f =⇒ −f−1 continuă, de unde rezultă concluzia. �
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Lemă (*). Fie o funct,ie convexă pe un interval. Atunci funct,ia este mărginită pe acel interval.

Demonstrat,ie. Fie f : [a, b] ∈ R, convexă pe [a, b].

=⇒ f(ta+ (1− t)b) ≤ tf(a) + (1− t)f(b) ≤ max{f(a), f(b)}, ∀ t ∈ [0, 1]

=⇒ f(x) ≤ max{f(a), f(b)}, ∀ x ∈ [a, b] =⇒ mărginită superior.

Presupunem prin absurd că este nemărginită inferior =⇒ ∀ M ∈ R, ∃ x ∈ [a, b], f(x) < M .
Pentru M0 = min{f(a), f(b)}, ∃ x0 ∈ (a, b), f(x0) < M0.

Fie y1 =
f(b)− f(x0)

b− x0
(a− b) + f(b) s, i y2 =

f(a)− f(x0)

a− x0
(b− a) + f(a)

Pentru M1 = min{y1, y2}, ∃ x1 ∈ [a, b], f(x1) < M1. Dacă x1 ∈ (a, x0) =⇒ x0 ∈ (x1, b) :

=⇒ f(tx1 + (1− t)b) ≤ tf(x1) + (1− t)f(b)

Luăm t = x0−b
x1−b :

=⇒ f(x0) ≤ x0 − b
x1 − b

(f(x1)− f(b)) + f(b)

Dar f(x1) < y1 =⇒ f(x1)− f(b) < f(b)−f(x0)
b−x0

(a− b)

=⇒ f(x0) < f(b) +
x0 − b
x1 − b

f(b)− f(x0)

b− x0
(a− b) = f(b)− a− b

x1 − b
(f(b)− f(x0))

Dar x1 > a =⇒ x1 − b > a− b =⇒ 1
x1−b <

1
a−b =⇒ − a−b

x1−b < −
a−b
a−b = −1

=⇒ f(x0) < f(b)− f(b) + f(x0) =⇒ f(x0) < f(x0) (Contradict, ie)

Dacă x1 ∈ (x0, b) se obt, ine ı̂n mod analog o contradict, ie =⇒ funct, ia este mărginită inferior. �

Teoremă (*). Fie o funct,ie convexă pe un interval. Atunci funct,ia este continuă ı̂n orice punct
interior al intervalului.

Demonstrat,ie. Fie f : I → R, convexă pe I, s, i a < x < y < b.

=⇒ f(ta+ (1− t)y) ≤ tf(a) + (1− t)f(y), ∀ t ∈ [0, 1]

=⇒ f((1− t′)x+ t′b) ≤ (1− t′)f(x) + t′f(b), ∀ t′ ∈ [0, 1]

Luăm t = x−y
a−y , t

′ = y−x
b−x .

=⇒ f(x) ≤ x− y
a− y

(f(a)− f(y)) + f(y) s, i f(y) ≤ y − x
b− x

(f(b)− f(x)) + f(x)
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=⇒ x− y
b− x

(f(b)− f(x)) ≤ f(x)− f(y) ≤ x− y
a− y

(f(a)− f(y))

f mărginită =⇒ f(b)− f(x), f(a)− f(y) mărginite

Cleste
=⇒ lim

x→y
x<y

f(x) = f(y) s, i lim
y→x
y>x

f(y) = f(x), ∀ x, y puncte interioare

=⇒ lim
x→x0
x<x0

f(x) = f(x0) = lim
x→x0
x>x0

f(x), ∀ x0 punct interior

Deci f continuă ı̂n orice punct interior. �
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4 Derivabilitate

Definit, ie (derivata unei funct, ii ı̂ntr-un punct). Se numes,te derivata funct, iei f : D → R, D ⊆ R,
ı̂ntr-un punct x0 ∈ D ∩D′ următoarea limită, dacă există:

lim
x→x0

f(x)− f(x0)

x− x0
not
= f ′(x0)

Definit, ie (derivabilitate ı̂ntr-un punct). O funct, ie f : D → R, D ⊆ R, se numes,te derivabilă
ı̂ntr-un punct x0 ∈ D ∩D′ dacă ∃ f ′(x0) ∈ R.

Dacă ∃ f ′(x0) ∈ {−∞,∞}, atunci se spune că funct, ia are derivată ı̂n x0.

Observat, ie. O funct,ie este derivabilă pe o mult,ime ⊆ R dacă este derivabilă ı̂n fiecare punct al ei.

Observat, ie (legătura dintre continuitate s, i derivabilitate). Orice funct,ie derivabilă ı̂ntr-un punct
este continuă ı̂n acel punct, dar invers nu.

Demonstrat,ie.

lim
x→x0

f(x)− f(x0) = lim
x→x0

f(x)− f(x0)

x− x0
· (x− x0) = f ′(x0) · 0 = 0 =⇒ lim

x→x0

f(x) = f(x0)

Funct, ia g : R→ R, g(x) = |x| este continuă ı̂n 0, dar nu derivabilă. �

Observat, ie. Dacă o funct,ie are derivată ı̂ntr-un punct, nu este neapărat continuă ı̂n acel punct.

Demonstrat,ie. Funct, ia f : [0,∞) → R, f(x) =

{ √
x, x > 0
−1, x = 0

, are derivata ∞ ı̂n 0, dar este

discontinuă.

lim
x→0+

√
x+ 1

x− 0
= lim

x→0+

1

x
= +∞

lim
x→0+

f(x) = 0 6= −1 = f(0)

�
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Definit, ie (derivata unei funct, ii). Dacă funct, ia f : D → R este derivabilă pe E ⊆ D, atunci funct, ia
f ′ : E → R

f ′(x) = lim
y→x

f(y)− f(x)

y − x
se numes,te derivata funct, iei f .

Observat, ie. Sunt valabile următoarele reguli de derivare (atunci când expresiile sunt bine definite):

a) (f + g)′ = f ′ + g′

b) (f · g)′ = fg′ + f ′g

c)

(
f

g

)′
=
f ′g − fg′

g2

d) (f ◦ g)′ = (f ′ ◦ g) · g′

Demonstrat,ie.
a) trivial

b) (f · g)′(x) = lim
y→x

f(y)g(y)− f(x)g(x)

y − x
= lim

y→x

f(y)g(y)− f(y)g(x) + f(y)g(x)− f(x)g(x)

y − x
=

= f(x) · lim
y→x

g(y)− g(x)

y − x
+ g(x) · lim

y→x

f(y)− f(x)

y − x
= f(x) · g′(x) + f ′(x) · g(x) = (fg′ + f ′g)(x)

c)

(
f

g

)′
(x) =

(
f · 1

g

)′
(x) =

(
f ·
(

1

g

)′
+
f ′

g

)
(x) = f(x) · lim

y→x

1
g(y) −

1
g(x)

y − x
+
f ′

g
(x) =

= f(x) · lim
y→x

g(x)− g(y)

(y − x)g(x)g(y)
+
f ′

g
(x) =

(
−fg

′

g2
+
f ′g

g2

)
(x) =

(
f ′g − fg′

g2

)
(x)

d) (f◦g)′(x) = lim
y→x

f(g(y))− f(g(x))

y − x
= lim

y→x

f(g(y))− f(g(x))

g(y)− g(x)
·g(y)− g(x)

y − x
= f ′(g(x))·g′(x) = ((f ′◦g) · g′)(x)

�
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Observat, ie. Funct,iile elementare au următoarele derivate:

a) (xn)′ = n · xn−1, n ∈ N∗

b) (ex)′ = ex

c) ( n
√
x)′ =

1

n
n
√
xn−1

, n ∈ N, n ≥ 2

d) (lnx)′ =
1

x

e) (sinx)′ = cosx

f) (cosx)′ = − sinx

g) (arcsinx)′ =
1√

1− x2
, x ∈ (−1, 1)

Demonstrat,ie.

a) (xn)′ = lim
y→x

yn − xn

y − x
= lim

y→x

(y − x)(yn−1 + yn−2x+ ...+ yxn−2 + xn−1)

y − x
= n · xn−1

b) (ex)′ = lim
y→x

ey − ex

y − x
= lim

y→x

ex(ey−x − 1)

y − x
= ex · ln e = ex

c) ( n
√
x)′ = lim

y→x

n
√
y − n
√
x

y − x
= lim

y→x

y − x
(y − x)( n

√
yn−1 + n

√
yn−2 n

√
x+ ...+ n

√
y

n
√
xn−2 +

n
√
xn−1)

=
1

n
n
√
xn−1

d) (lnx)′ = lim
y→x

ln y − lnx

y − x
= lim

y→x

ln(1 + y−x
x )

y−x
x · x

=
1

x

e) (sinx)′ = lim
y→x

sin y − sinx

y − x
= lim

y→x

2 sin(y−x
2 ) cos(y+x

2 )

y − x
= cosx · lim

y→x

sin(y−x
2 )

y−x
2

= cosx

f) (cosx)′ =
(

sin
(π

2
+ x
))′

= cos
(π

2
+ x
)
·
(π

2
+ x
)′

= − sinx

g) (arcsinx)′ = lim
y→x

arcsin y − arcsinx

y − x
= lim

y→x

arcsin y − arcsinx

sin(arcsin y − arcsinx)
· sin(arcsin y − arcsinx)

y − x
=

= lim
y→x

y
√

1− x2 − x
√

1− y2
y − x

= lim
y→x

y
√

1− x2 − x
√

1− x2 + x
√

1− x2 − x
√

1− y2
y − x

=
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=
√

1− x2 + lim
y→x

x(1− x2 − 1 + y2)

(y − x)(
√

1− x2 +
√

1− y2)
=
√

1− x2 + lim
y→x

x(y − x)(y + x)

(y − x)(2
√

1− x2)
=

=
√

1− x2 +
x2√

1− x2
=

1√
1− x2

�

Observat, ie. Fie I, J intervale ⊆ R, f : I → J, inversabilă, f−1 : J → I, y ∈ J, f derivabilă ı̂n
f−1(y), f ′ ◦ f−1(y) 6= 0. Atunci f−1 derivabilă ı̂n y s, i:

(f−1)′(y) =
1

f ′ ◦ f−1(y)

Demonstrat,ie.

f ◦ f−1(y) = y =⇒ f ′ ◦ f−1(y) · (f−1)′(y) = 1 =⇒ (f−1)′(y) =
1

f ′ ◦ f−1(y)

�

Definit, ie (punct de maxim local al unei funct, ii). Se numes,te punct de maxim local al unei funct, ii
f un punct x0 dacă ∃ V ∈ V(x0), f(x0) ≥ f(x), ∀ x ∈ V .

Un punct este minim local al unei funct, ii f dacă este maxim local al funct, iei −f .

Definit, ie (punct de extrem al unei funct, ii). Punct de extrem se numes,te orice punct de maxim
sau minim local al unei funct, ii.

Teoremă (Fermat). Fie o funct,ie f : I → R, I interval, s, i un punct de extrem x0 ∈ I, diferit de
capete, ı̂n care funct,ia este derivabilă. Atunci f ′(x0) = 0.

Demonstrat,ie. Presupunem că x0 este punct de maxim local =⇒ ∃ V ∈ V(x0), f(x0) ≥
f(x), ∀ x ∈ V .

=⇒ f(x)− f(x0) ≤ 0, ∀ x < x0, x ∈ V =⇒ f(x)− f(x0)

x− x0
≥ 0 =⇒ f ′(x0) ≥ 0

=⇒ f(x)− f(x0) ≤ 0, ∀ x > x0, x ∈ V =⇒ f(x)− f(x0)

x− x0
≤ 0 =⇒ f ′(x0) ≤ 0

Deci f ′(x0) = 0.
Dacă x0 este punct de minim local, aplicăm primul caz pentru −f =⇒ −f ′(x0) = 0 =⇒

f ′(x0) = 0. �
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Teoremă (Rolle). Fie o funct,ie f : [a, b] → R, derivabilă pe (a, b) s, i continuă ı̂n capete. Dacă
f(a) = f(b) =⇒ ∃ c ∈ (a, b), f ′(c) = 0.

Demonstrat,ie. Dacă funct, ia este constantă =⇒ f ′(x) = 0, ∀ x ∈ [a, b]. Presupunem că este
neconstantă:

Weierstrass
=⇒ f([a, b]) = [f(α), f(β)] s, i fie c ∈ {α, β} \ {a, b} =⇒ c ∈ (a, b) s, i este punct de extrem.

Fermat
=⇒ f ′(c) = 0.

�

Observat, ie (s, irul lui Rolle). Fie f : I → R, I interval, derivabilă pe I s, i f ′ : I → R. Fie
D = {x ∈ I | f ′(x) = 0}. Dacă a, b ∈ D, consecutive, f(a)f(b) ≤ 0, atunci există exact o rădăcină
a lui f ı̂n (a, b).

Demonstrat,ie. Pe un interval pe care derivata e nenulă, funct, ia e injectivă (̂ın caz contrar, aplicăm
Rolle s, i obt, inem o contradict, ie). Din P.D., avem cel put, in o rădăcină a funct, iei ı̂n (a, b), iar din
injectivitate aceasta este unică. �

Teoremă (Lagrange). Fie o funct,ie f : [a, b]→ R, derivabilă pe (a, b) s, i continuă ı̂n capete

=⇒ ∃ c ∈ (a, b), f ′(c) =
f(a)− f(b)

a− b
.

Demonstrat,ie. Fie g : [a, b]→ R,

g(x) = f(x)− f(a)− f(b)

a− b
x+

af(b)− bf(a)

a− b

g este derivabilă pe (a, b) s, i continuă ı̂n capete, iar g(a) = 0 = g(b)
Rolle
=⇒ ∃ c ∈ (a, b), g′(c) =

0 =⇒ f ′(c) = f(a)−f(b)
a−b . �

Observat, ie (consecint,ele lui Lagrange). Fie o funct,ie f : I → R, I interval, derivabilă pe I s, i
g : D → R, D ⊆ R interval. Atunci:

I) f ′(x) = 0, ∀ x ∈ I ⇐⇒ f(x) = c ∈ R, ∀ x ∈ I

II) f ′(x) = g′(x), ∀ x ∈ I ⇐⇒ f(x) = g(x) + c, c ∈ R, ∀ x ∈ I
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III) f ′(x) ≥ 0, ∀ x ∈ I ⇐⇒ f crescătoare pe I

(Dacă A = {x ∈ I | f ′(x) = 0} nu cont,ine niciun interval, atunci f este strict crescătoare pe I)

IV) ∃ V0 ∈ V(x0), g derivabilă pe V0 \ {x0}

g continuă in x0

∃ limx→x0
g′(x) = l ∈ R

 =⇒ ∃ g′(x0) = l

Teoremă (Darboux). Fie o funct,ie f : I → R, I interval, derivabilă pe I. Atunci funct,ia f ′ : I → R
are prop. Darboux.

Demonstrat,ie. Fie g : I → R, g(x) = f(x)− λx, derivabilă.

∀ a < b ∈ I, ∀ λ ∈ R, f ′(a) < λ < f ′(b) ⇐⇒ g′(a) < 0 < g′(b)

Presupunem prin absurd că g este injectivă pe [a, b], dar are P.D., deci este strict monotonă pe
[a, b]. Să zicem că este strict cresc.

=⇒ g(x)− g(a)

x− a
> 0, ∀ x ∈ (a, b) =⇒ g′(a) > 0 (Contradict, ie)

Dacă era strict descresc., atunci g′(b) < 0 (Contradict, ie).

=⇒ g neinjectivă pe [a, b] =⇒ ∃ x0, x1 ∈ [a, b], g(x0) = g(x1)
Rolle
=⇒ ∃ c ∈ (x0, x1) ⊆ (a, b), g′(c) = 0

=⇒ f ′(c) = λ. Deci f ′ are P.D. �

Teoremă (Cauchy). Fie funct,iile f, g : [a, b] → R, derivabile pe (a, b) s, i continue ı̂n capete, iar
g′(x) 6= 0, ∀ x ∈ (a, b)

=⇒ ∃ c ∈ (a, b),
f ′(c)

g′(c)
=
f(a)− f(b)

g(a)− g(b)
.

Demonstrat,ie. Fie h : [a, b]→ R,

h(x) = f(x)− f(a)− f(b)

g(a)− g(b)
g(x) +

g(a)f(b)− g(b)f(a)

g(a)− g(b)

h este derivabilă pe (a, b) s, i continuă ı̂n capete, iar h(a) = 0 = h(b)
Rolle
=⇒ ∃ c ∈ (a, b), h′(c) =

0 =⇒ f ′(c)
g′(c) = f(a)−f(b)

g(a)−g(b) .
�
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Teoremă (l’Hospital 0
0 ). Fie funct,iile f, g : I \ {x0} → R, I interval ⊆ R, x0 ∈ I ′. Dacă:

∃ V0 ∈ V(x0), f, g derivabile pe V0 \ {x0}

limx→x0
f(x) = 0 = limx→x0

g(x)

∃ U0 ∈ V(x0), g′(x) 6= 0, ∀ x ∈ U0

∃ limx→x0

f ′(x)
g′(x) = l ∈ R


=⇒ ∃ lim

x→x0

f(x)

g(x)
= l

Demonstrat,ie. Dacă x0 ∈ R, fie F,G : I ∪ {x0} → R, F (x) = f(x), G(x) = g(x), ∀ x ∈ I \ {x0} s, i
F (x0) = 0 = G(x0). Din Cauchy pe [x, x0], x ∈ V0 ∩ U0 =⇒ ∃ cx ∈ (x, x0),

F ′(cx)

G′(cx)
=
F (x)− F (x0)

G(x)−G(x0)
=
F (x)

G(x)

cx<x0=⇒ f ′(cx)

g′(cx)
=
F (x)

G(x)

=⇒ lim
x→x0
x<x0

F (x)

G(x)
= lim

x→x0
x<x0

f ′(cx)

g′(cx)
= lim

x→x0

f ′(x)

g′(x)
= l

Analog lim
x→x0
x>x0

F (x)

G(x)
= l =⇒ ∃ lim

x→x0

F (x)

G(x)
= lim

x→x0

f(x)

g(x)
= l

Dacă x0 = ±∞, aplicăm primul caz funct, iilor f( 1
x ) s, i g( 1

x ). �

Teoremă (l’Hospital ∗∞ ). Fie funct,iile f, g : I \ {x0} → R, I interval ⊆ R, x0 ∈ I ′. Dacă:

∃ V0 ∈ V(x0), f, g derivabile pe V0 \ {x0}

limx→x0
g(x) = ±∞

∃ U0 ∈ V(x0), g′(x) 6= 0, ∀ x ∈ U0

∃ limx→x0

f ′(x)
g′(x) = l ∈ R


=⇒ ∃ lim

x→x0

f(x)

g(x)
= l

Demonstrat,ie. Fie s, irul oarecare an < x0, an → x0. Aplicăm Cauchy pe [an, an+1] =⇒ ∃ cn ∈
(an, an+1), cn → x0,

f(an+1)− f(an)

g(an+1)− g(an)
=
f ′(cn)

g′(cn)

Heine→ l
Stolz
=⇒ f(an)

g(an)
→ l

Heine
=⇒ lim

x→x0
x<x0

f(x)

g(x)
= l

Analog lim
x→x0
x>x0

f(x)

g(x)
= l =⇒ ∃ lim

x→x0

f(x)

g(x)
= l

�
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Definit, ie. Se numes,te derivata laterală la stânga a funct, iei f : D → R, D ⊆ R, ı̂ntr-un punct
x0 ∈ D ∩D′ următoarea limită, dacă există:

lim
x→x0
x<x0

f(x)− f(x0)

x− x0
not
= f ′s(x0)

Definit, ie. Se numes,te derivata laterală la dreapta a funct, iei f : D → R, D ⊆ R, ı̂ntr-un punct
x0 ∈ D ∩D′ următoarea limită, dacă există:

lim
x→x0
x>x0

f(x)− f(x0)

x− x0
not
= f ′d(x0)

Observat, ie. Mai avem următoarele puncte remarcabile:

- punct stat,ionar: f ′(x0) = 0

- punct de ı̂ntoarcere: f continuă ı̂n x0, f
′
s(x0) = −f ′d(x0) = ±∞

- punct unghiular: f continuă ı̂n x0, f
′
s(x0) sau f ′d(x0) ∈ R, f ′s(x0) 6= f ′d(x0)

- punct de inflexiune: f are derivată s, i este continuă ı̂n x0, convexă pe o parte s, i concavă pe cealaltă

Teoremă (*). Fie funct,ia f : I → R, I interval ⊆ R, de două ori derivabilă pe I. Dacă f ′′(x) ≥
0, ∀ x ∈ I, atunci funct,ia este convexă.

Demonstrat,ie.
f ′′(x) ≥ 0 =⇒ f ′ este crescătoare

Fie x1 < x2 < x3 ∈ I. Din Lagrange:

∃ c ∈ (x1, x2), f ′(c) =
f(x1)− f(x2)

x1 − x2
s, i ∃ c′ ∈ (x2, x3), f ′(c) =

f(x2)− f(x3)

x2 − x3

c < c′ =⇒ f ′(c) ≤ f ′(c′) =⇒ f(x1)− f(x2)

x1 − x2
≤ f(x2)− f(x3)

x2 − x3

∀ t ∈ (0, 1), ∃ x2 ∈ (x1, x3), t =
x2 − x3
x1 − x3

=⇒ (1− t)(f(x2)− f(x3) ≤ t(f(x1)− f(x2))

=⇒ f(tx1 + (1− t)x3) ≤ tf(x1) + (1− t)f(x3), ∀ t ∈ (0, 1)

Inegalitatea e valabilă s, i pentru t ∈ {0, 1} =⇒ ∀ x1, x3 ∈ I, ∀ t ∈ [0, 1], f(tx1 + (1 − t)x3) ≤
tf(x1) + (1− t)f(x3) =⇒ funct, ia este convexă. �
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5 Primitive µ

6 Integrale definite µ
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